Transverse Momentum Dependent (IMID) Parton Distribution Eunctions in a Spectator Diquark Model

Francesco Conti

Department of Nuclear and Theoretical Physics, University of Pavia And INEN, Section of Pavia

in collaboration with: Marco Radici (INEN Pavia)
Alessandro Bacchetta (JLAB)

Nucleon Spin Structure

Deep Inelastic Scattering:

$$
e p \rightarrow e^{\prime} X
$$

Leptonic tensor: known at any order in PQED

usefulness of an expansion in powers of $1 / Q$, besides that in in powers of $1 / Q$, besides that in
powers of $\alpha_{s}(p Q C D):$ TMST DIS reginne: $Q^{2}=-(\nu, \mathbf{q})^{2}>M^{2}$

$$
\nu=E-E^{\prime} \gg M
$$

$$
x_{B}=Q^{2} / 2 M \nu \quad \text { fixed }
$$

Hadronic tensor: hadron internal dynamics (low energy \Leftrightarrow non-pert. QCD), in terms of structure functions, with SCALING properties (Q-INdependence)

PARTON MODEL:

Asymptotic Freedom/
Confinement

- incoherent sum of interactions on almost free (on shell) pointlike partons
- hard/soft factorization theorems: convolution between hard elementary cross sections and soft (non-pert.) and universal parton distribution functions \Leftrightarrow PDF

Perton clistributions = Probebility clensities of fincling a perton with x momeritun firection in the terget hedron (NO intrinsic trensverse momentum \Leftrightarrow Collineer fectorizetion)

Nucleon Spin Structure \& TMD parton densities

Semi Inclusive Deep Inelastic Scattering:

Fragmentation Correlator \longrightarrow FFs
The 3 momenta $\left\{P, q, P_{h}\right\}$ CANNOT be all collinear ; in T-frame, keeping the cross section differential in dq.: sensitivity to the parton transverse momenta in the hard vertex \Leftrightarrow TMD parton densities !

Quark-Quark Correlator \longrightarrow PDFs

Hadronic tensor in the Parton Model (tree level, leading twist):
$2 M W^{\mu \nu}\left(q, P, S, P_{h}\right)=\int d^{2} \mathbf{p}_{T} d^{2} \mathbf{k}_{T} \delta^{(2)}\left(\mathbf{p}_{T}+\mathbf{q}_{T}-\mathbf{k}_{T}\right) \operatorname{Tr}\left[\Phi\left(x, \mathbf{p}_{T}, S\right) \gamma^{\mu} \Delta\left(z_{h}, \mathbf{k}_{T}\right) \gamma^{\nu}\right]$

TMD hard/soft factorization: Ji, Ma, Yuan, PRD 71 (O4); Collins, Metz, PRL 93 (04)

$$
\Phi\left(x, \mathbf{p}_{T}, S\right)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}(0) \mathcal{U}_{[0, \xi]} \psi(\xi)|P, S\rangle
$$

$$
p \approx\left(0, x P^{+}, \mathbf{p}_{T}\right) \Rightarrow \xi=\left(\xi^{-}, 0, \boldsymbol{\xi}_{T}\right)
$$

Diagonal matrix elements of billocal operators, built with quark fields, on hadronic states

Nucleon Spin Structure \& TMD parton densities (2)

Projecting over various Dirac structures, all

 leading twist TMD parton distribution functions can be extracted, with probabilistic interpretationKnown x-parametrization, poorly known p_{T} one (gaussian and with no flavour dependence; other possible functional forms! Connection with orbital L!)

Hautmann, arXiv:0805.1049 [hep-ph]

	T-even			T-odd		
TMD	U	L	T	U	L	T
u	f_{1}					$\mathrm{f}_{1 T^{\perp}}{ }^{\text {² }}$
1		$g_{1 L}$	$\mathrm{g}_{1 \mathrm{~T}}$			
t		$\mathrm{h}_{1 L^{\perp}}$	$\mathrm{h}_{1 T}, \mathrm{~h}_{1 T^{\perp}}$	$\mathrm{h}_{1}{ }^{\perp}$		

"Hadronic final states containing multiple jet events.... will play a central role in the LHC physics program.... Owing to the complex kinematics involving multiple hard scales and the large phase space opening up at very high energies, multi-jet events are potentially sensitive to QCD initial-state

$$
\Phi^{[\Gamma]}\left(x, \mathbf{p}_{T}, S\right)=\operatorname{Tr}\left[\Phi\left(x, \mathbf{p}_{T}, S\right) \Gamma\right]
$$ radiation that depend on the finite transverse- momentum tail of partonic matrix elements and distributions..."

The Spectator Diquark model

The Φ correlator involves matrix elements on bound hadronic states, whose partonic content is neither known nor computable in pQCD (low energy region!) \rightarrow model calculations required!

SPECTATOR DIQUARK model:

(Jakob, Mulders, Rodrigues, A626 (97) 937, Bacchetta, Schaefer, Yang, P.L. B578 (04) 109)

- Replace the sum over intermediate states in Φ with a single state of definite mass (on shell) and coloured.
- Its quantum numbers are determined by the action of the quark fields on $|P, S\rangle$, so are those of a diquark!

$\Phi\left(x, \mathbf{p}_{T}, S\right)=\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}(0) U_{[0, \xi]} \psi(\xi)|P, S\rangle \approx \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(0)}(S)+\ldots$
$(p-P)^{2}=M_{D}^{2} \longrightarrow p^{2}=\tau\left(x, \mathbf{p}_{T}^{2}\right)=-\frac{\mathbf{p}_{T}^{2}+L_{D}^{2}\left(m^{2}\right)}{1-x}$
$L_{D}^{2}\left(m^{2}\right)=x M_{D}^{2}+(1-x) m^{2}-x(1-x) M^{2}$
$\mathcal{M}^{(0)}(S)=\langle p-P| \psi(0)|P, S\rangle$

Simple, Coveriant model: analytic results, mainly 3 paremeters.

The Spectator Diquark model (2)

Nucleon (N)-quark (q)-diquark (Dq) vertex:

$$
\text { Dq Spin }=\mathbf{0} \text { : flavour-singlet [-\{ud-du\}] } \quad \mathcal{Y}_{s}=i g_{s}\left(p^{2}\right) \mathbf{1}
$$

Dq Spin =1: flavour-triplet $[-\{d d, u d+d u, u u\}]$

$$
\mathcal{Y}_{a}^{\mu}=i \frac{g_{a}\left(p^{2}\right)}{\sqrt{2}} \gamma^{\mu} \gamma_{5}
$$

Need of Axiel-Vector clicjuarks in orcler to describe of in N

$\mathrm{N}-\mathrm{q}-\mathrm{Dq}$ vertex form factors (non-pointlike nature of N and Dq):

- Pointlike:
- Dipolar:

Virtual S=1 Dq propagator (\Leftrightarrow real Dq polarization sum): $d^{\mu \nu}(p-P)=\sum_{\lambda_{a}} \epsilon_{\lambda_{a}}^{* \mu}(p-P) \epsilon_{\lambda_{a}}^{\nu}(p-P)$ $d^{\mu \nu}(p-P)=\left\{\begin{array}{lll}-g^{\mu \nu}, & \begin{array}{l}\text { 'Feynman': } \boldsymbol{\lambda}_{a}= \pm, \mathbf{0}, t\end{array} \\ \text { Bacchetta, Schaefer, Yang, } \begin{array}{l}\text { P.LB578 (04) } 109\end{array} \\ -g^{\mu \nu}+\frac{(p-P)^{\mu}(p-P)^{\nu}}{M_{a}^{2}}, & \begin{array}{l}\text { 'Covariant': } \boldsymbol{\lambda}_{a}= \pm, 0 \\ \text { Gamberg, Goldstein, Schlegel, arXiv:0708.0324 [hep-ph] }\end{array}\end{array}\right.$

$$
-g^{\mu \nu}+\frac{(p-P)^{\mu} n_{-}^{\nu}+(p-P)^{\nu} n_{-}^{\mu}}{(p-P) \cdot n_{-}}-\frac{M_{a}^{2}}{\left[(p-P) \cdot n_{-}\right]^{2}} n_{-}^{\mu} n_{-}^{\nu} \quad \begin{aligned}
& \text { 'Light-Cone’: } \boldsymbol{\lambda}_{a}= \pm \\
& \text { Schmidt, N.P.B593, (01) } 311
\end{aligned}
$$

The Spectator Diquark model (3)

Why should we privilege 'Light-Cone' (LC) gauge?

In DIS process, the exchanged virtual photon can in in principle probe not only the quark, but also the diquark, this latter being a charged lboson
$\mathrm{S}=0$ diquark contributes to F_{L} only:

$$
\begin{aligned}
& \text { Callan-Gross } \frac{F_{L}}{F_{T}} \stackrel{Q^{2} \rightarrow \infty}{\nrightarrow 0} \text { but } \\
& \quad 2 F_{1}(x)=\sum_{q} e_{q}^{2}\left[f_{1}^{q}(x)+f_{1}^{\bar{q}}(x)\right]
\end{aligned}
$$

Adopting LC gauge, the same holds true for $\mathrm{S}=1$ diquark

Not only ...

...but also
 also, while other gauges give contributions to F_{T} as well!

In our model: $\quad \checkmark$ Systematic calculation of $A \backsim \perp$ leading twist T-even and T-odd TIVD functions (hence of related PDF also)
\checkmark Several functional forms for $\mathrm{N}-\mathrm{q}$-Dq vertex form factors and $\mathrm{S}=1$ Dq | propagator
\checkmark Moreover, Overlap Representation of all TMD functions in terms of LCWFs!

Overlap representation for T-even TMD

The light-cone Fock wave-functions (LCWF) are the frame independent interpolating functions between hadron and quarklgluon degrees of freedom
following Brodksy, Hwang, Ma, Schmidt, N.P.B593 (01) 311
spin $=0$ Dq
$\begin{aligned} & \psi_{\lambda_{q}}^{\lambda_{N}}\left(x, \mathbf{p}_{T}\right)=\sqrt{\frac{p^{+}}{(P-p)^{+}}} \frac{\bar{u}\left(p, \lambda_{q}\right)}{p^{2}-m^{2}} \\ & \psi_{ \pm}^{+} \psi_{+}^{-} \\ &=-\left[\psi_{-}^{+}\right]^{*}, \psi_{-}^{-}=\psi_{+}^{+}\end{aligned}$
spin $=1 \mathrm{Dq}$

$$
\psi_{\lambda_{q}, \lambda_{a}}^{\lambda_{N}}\left(x, \mathbf{p}_{T}\right)=\sqrt{\frac{p^{+}}{(P-p)^{+}}} \frac{\bar{u}\left(p, \lambda_{q}\right)}{p^{2}-m^{2}} \epsilon_{\mu}^{*}\left(p-P, \lambda_{a}\right) \mathcal{\nu}_{a}^{\mu}\left(p^{2}\right) U\left(P, \lambda_{N}\right)
$$

Angular momentum conservation: $\lambda_{q}\left(+\lambda_{a}\right)+\boldsymbol{L}_{z,\{q D\}}=\lambda_{N}$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{a}-\mathrm{Da}}=1 \\
& \mathrm{~L}_{\mathrm{q}-\mathrm{Dq}}=2 \\
& U\left(P, \lambda_{N}\right)
\end{aligned}
$$

$$
\psi_{+}^{+}\left(x, \mathbf{p}_{T}\right)=(m+x M) \phi_{s} / x \quad \mathbf{L}=\mathbf{0}
$$

Eg. :

$$
\psi_{-}^{+}\left(x, \mathbf{p}_{T}\right)=-\left(p_{x}+i p_{y}\right) \phi_{s} / x \quad \mathbf{L}=\mathbf{1}
$$

$\mathrm{L}=1$ component relativistically enhanced w.r.t. $\mathrm{L}=0$ one! \Leftrightarrow Spin Crisis as a relativistic effect ?!

Non-zero relaifive orbital angular momentum between q and Dqj: the g.s. of q in \mathbb{N} is $\mathbb{N O T} J^{P}=1 / 2^{+}$; $N O$ SU($4 \cdot$) spin-isospin symmetry for \mathbb{N} wave-function!

Overlap representation for T-even TMD

Besides the Feynman diagram approach, Time-Even TIVD densities can be also calculated in terms of overlaps of our spectator diquark model LCWFs

For the Unpolarized TIMD parton distribution function, e.g. (using LC gauge for axial vector diquark):

Parameters Fixing

Jakob, Mulders, Rodrigues,
N.P. A626 (97) 937

SU(4) for |p>: $\quad f_{1}^{u}=\frac{3}{2} f_{1}^{s}+\frac{1}{2} f_{1}^{a}$
(s: $\mathbf{S}=0, \mathrm{l}=0 ; \quad f_{1}^{d}=f_{1}^{a}$

 unpolarized and polarized PDF: ZEUS for $f_{1} @ Q^{2}=0.3 \mathrm{GeV}^{2}$, GRSVO1 at LO for $g_{1} @ Q^{2}=0.26 \mathrm{GeV}^{2}$)

$$
\begin{aligned}
P_{q} \equiv \int_{0}^{1} d x x\left(f_{1}^{u}(x)+f_{1}^{d}(x)\right) & =0.584 \pm 0.010 & g_{A} \equiv \int_{0}^{1} d x\left(g_{1}^{u}(x)-g_{1}^{d}(x)\right) & =0.966 \pm 0.038 \\
\text { ZEUS } & =0.55 & \text { GRSV01 } & =0.969 \pm 0.096
\end{aligned}
$$

Fbadronic scale of the model:
$\mathrm{Q}_{0}{ }^{2} \sim 0.3 \mathrm{GeV}{ }^{2}$
our fit; error band from MINUIT covariant error matrix phenomenological parametrizations

GRSV01 at LO

$\mathbf{p}_{\mathbf{T}}$ - model dependence

General behaviour: in our diquark model the average

 quark transverse momentum decreases as x increases, and down quarks on average carry less transverse```
x-andlilimour-clepenclence!
```


## momentum than up quarks




The studly of $\rho_{r}$-clependence shed light on the spinlorbitel angular momentumstructure of the Nucleon!

## Transversity



Change of sign at $x=0.5$, due to the negative $S=1$ Dq contributions, which become dominant at high $x$


Parametrization: $p_{T}$-dependence $\sim \exp \left[-p_{T}{ }^{2} /\left\langle p_{T}{ }^{2}\right\rangle\right]$ Anselmino et al. $\quad x$-dependence $\sim x^{\alpha}(1-x)^{\beta} \ldots$ P.R.D75 (07) 054032

## Time-Odd TMD distributions

T-odd distributions: crucial to explain the evidences of SSA! Their existence is bound to the Gauge Link operator ( $\Leftrightarrow$ QCD gauge invariance), producing the necessary non-trivial T-odd phases!

$$
\Phi\left(x, \mathbf{p}_{T}, S\right)=\int \frac{d^{4} \xi}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}(0) U_{[0, \xi]} \psi(\xi)|P, S\rangle \approx \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(0)}(S)+
$$

| $\vdots$ | gluon-loop contribution: |
| :---: | :---: |
| $\vdots$ | $\vdots$ |
| $\vdots$ | first order approximation |
| $\vdots$ | $\vdots$ |
| $\vdots$ |  |
| of the Gauge link! |  |

$$
\frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}}\left[\overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(1)}(S)+\overline{\mathcal{M}}^{(1)}(S) \mathcal{M}^{(0)}(S)\right]
$$


$\mathcal{M}^{(1)}(S)=\int\left(\frac{d^{4} l}{(2 \pi)^{4}} \frac{i e n_{-}^{\rho}\left(\not p^{\prime}-\eta+m\right)}{D_{1} D_{2} D_{3} D_{4}}\left\{\begin{array}{l}\Gamma_{s \rho} \mathcal{V}_{\sigma} U(D, S) \\ \epsilon_{\sigma}^{*}\left(p-P, \lambda_{a}\right) \Gamma_{a \rho}^{\nu \sigma} d_{\mu \nu}(p-l-P) \mathcal{Y}_{a}^{\mu} U(P, S)\end{array}\right.\right.$
$\Gamma_{s \rho}=i e(2 P-2 p+l)_{\rho}$
v: an. mag. mom. of $S=1$ Dq.
$\Gamma_{a \rho}^{\nu \sigma}=-i e\left[(2 P-2 p+l)_{\rho} g^{\nu \sigma}-(P-p+(1+v) l)^{\sigma} g_{\rho}^{\nu}-(P-p-v l)^{\nu} g_{\rho}^{\sigma}\right] \quad \mathrm{v}=1 \Leftrightarrow$ YWWV vertex!

## Time-Odd TMD distributions (2)

Sivers function appears in the TMD distribution of an unpolarized quark, and describes the possibility for the latter to be distorted due to the parent Proton transverse polarization:


$$
\frac{\varepsilon_{T}^{i j} p_{T i} \hat{S}_{T j}}{M} f_{1 T}^{\perp s / a}\left(x, \mathbf{p}_{T}^{2}\right)=-\frac{1}{4} \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \operatorname{Tr}\left[\left(\overline{\mathcal{M}}_{s / a}^{(1)}(S) \mathcal{M}_{s / a}^{(0)}(S)-\overline{\mathcal{M}}_{s / a}^{(1)}(-S) \mathcal{M}_{s / a}^{(0)}(-S)\right) \gamma^{+}\right]+\text {h.c. }
$$

$$
\begin{aligned}
f_{1 T}^{\perp s}\left(x, \mathbf{p}_{T}^{2}\right) & =-\frac{N_{s}^{2}}{(2 \pi)^{4}} \frac{M e^{2}(m+x M)(1-x)^{3}}{4 L_{s}^{2}\left(\Lambda_{s}^{2}\right)\left(\mathbf{p}_{T}^{2}+L_{s}^{2}\left(\Lambda_{s}^{2}\right)\right)^{3}} \\
f_{1 T}^{\perp a}\left(x, \mathbf{p}_{T}^{2}\right) & =\frac{N_{a}^{2}}{(2 \pi)^{4}} \frac{M e^{2}(m+x M) x(1-x)^{2}}{4 L_{a}^{2}\left(\Lambda_{a}^{2}\right)\left(\mathbf{p}_{T}^{2}+L_{a}^{2}\left(\Lambda_{a}^{2}\right)\right)^{3}}
\end{aligned}
$$

Eoth provicle crucial information on partons Orbital Anglu:tr Momentum coritributions to the Proton spin!

Boer-Mulders function describes the transverse spin distribution of a quark in an unpolarized Proton:
$\frac{\varepsilon_{T}^{i j} p_{T j}}{M} h_{1}^{\perp s / a}\left(x, \mathbf{p}_{T}^{2}\right)=\frac{1}{4} \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \operatorname{Tr}\left[\left(\overline{\mathcal{M}}_{s / a}^{(1)}(S) \mathcal{M}_{s / a}^{(0)}(S)+\overline{\mathcal{M}}_{s / a}^{(1)}(-S) \mathcal{M}_{s / a}^{(0)}(-S)\right) i \sigma^{i+} \gamma_{5}\right]+$ h.c.
$h_{1}^{\perp s}\left(x, \mathbf{p}_{T}^{2}\right)=f_{1 T}^{\perp s}\left(x, \mathbf{p}_{T}^{2}\right)$

$h_{1}^{\perp a}\left(x, \mathbf{p}_{T}^{2}\right)=-\frac{f_{1 T}^{\perp a}\left(x, \mathbf{p}_{T}^{2}\right)}{x}$$\quad$| Sivers $\Leftrightarrow$ Boer-Mulders: |
| :---: |
| identity for $\mathrm{S}=0 \mathrm{Dq}$, simple relation for |
| $\mathrm{S}=1 \mathrm{Dq}$ (but only using LC gauge!) |



## Overlap representation for T-odd TMD

## Tree level LCWFs are not enough! We need a convolution over

 transverse momenta, including a Final State Interactions kerinel G to model the one-gluon exchange residual interaction!
## So far, only results for Sivers function and $\mathbf{S = 0}$ diquark

Brodsky, Gardner, P.L.B643 (06) 22
Zu, Schmidt, P.R.D75 (07) 073008



$$
\operatorname{Im} G\left(x, \mathbf{p}_{T}, \mathbf{p}_{T}^{\prime}\right)=-\frac{e^{2}}{2(2 \pi)^{2}} \frac{1}{\left(\mathbf{p}_{T}-\mathbf{p}_{T}^{\prime}\right)^{2}} \quad|\quad| \begin{gathered}
\text { Universsl Fsi operstor G ! } \\
(\text { Using LC geuge for S=1 Dol }
\end{gathered}
$$

## SIDIS weighted SSAs



## Single Spin Asymmetry :

$$
A_{U T}^{w} \equiv \frac{\int d \phi_{S} d^{2} \boldsymbol{P}_{h \perp} w\left(d^{6} \sigma_{U T}^{\uparrow}-d^{6} \sigma_{U T}^{\downarrow}\right)}{\int d \phi_{S} d^{2} \boldsymbol{P}_{h \perp}\left(d^{6} \sigma_{U T}^{\uparrow}+d^{6} \sigma_{U T}^{\downarrow}\right)}
$$

$\left|\boldsymbol{P}_{h \perp}\right| / M$ weighted asymmetries allow for an analytic deconvolution of the integrals upon transverse momenta, while unveighted ones can only be decoupled through (gaussian) assumptions on TMDs.

Collins Asymmetry:

$$
A_{U T}^{\frac{\left|P_{h \perp 1}\right|}{M}} \sin \left(\phi+\phi_{S}\right)(x) \approx \frac{\int_{\text {cuts }} d y d z 2 B(y) \sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\perp(11))}(z)}{\int_{\text {cuts }} d y d z A(y) \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}
$$

Sivers Asymmetry:

$$
A_{U T}^{\left|\boldsymbol{P}_{h \perp 1}\right|} \sin \left(\phi-\phi_{s}\right)(x) \approx-\frac{\int_{\text {cuts }} d y d z 2 A(y) \sum_{q} e_{q}^{2} f_{1 T}^{\perp(1)) q}(x) D_{1}^{q}(z)}{\int_{\text {cuts }} d y d z A(y) \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}
$$

## SIDIS weighted SSAs

$D_{1}$ from De Florian-Sassot-Stratmann, hep-ph/0703242 (2007).
$\mathrm{H}_{1}{ }^{\perp}$ from diquark model,

Collins Asymmetry :


Sivers Asymmetry:


## Conclusions \& perspectives

Why another model for TIVD? We actually don't know much about them!

Why a spectator diquark model? It's simple, alvays analytic results! Able to reproduce T-odd effects! Why including axial-vector diquarks? Needed for down quarks!

What's new in our work? Systematic calculation of $A \amalg$ leading twist T-even and T-odd TMDs
A.Bacchetta, F.C., M.Radici; arXiv:0807.0321 [hep-ph]

Several forms of the $\mathrm{N}-q-$ Dq vertex FF and of the $\mathrm{S}=1$ diquark propagator
9 free parameters fixed by fitting available parametrization for $\mathrm{f}_{1}$ and $g_{1}$
T-even overlap representation: LCWFs with non-zero L, breaking of SU(4)
T-odd overlap representation: universal FSI operator

Which are the main results? Interesting $p_{T}$ dependence
Satisfactory agreement with u \& d transversity parametrizations Agreement with lattice on T-odd functions signs for all flavours Satisfactory agreement with u Sivers moments parametrizations, but understimation for d quark.

Future: calculate observables (SSA) and exploit model LCWFs to compute other fundamental objects, such as nucleon e.m form factors and GPDs

## Support Slides

## Boer-Mulders function


$f_{q^{\uparrow} / \mathrm{p}}=\frac{1}{2}\left[f_{1}^{q}\left(x, \mathbf{p}_{T}^{2}\right)-h_{1}^{\perp q}\left(x, \mathbf{p}_{T}^{2}\right) \frac{\left(\mathbf{p}_{T} \times \widehat{\mathbf{s}}_{q T}\right) \cdot \hat{\mathbf{P}}}{M}\right] \quad$ density of pol. quarks $\mathbf{q}^{\uparrow}$ in unpol. $\mathbf{p}$

if $\mathrm{s}_{\mathrm{qTx}} \Rightarrow$ deformation $\Delta$

$$
\Delta \propto-p_{\text {Ty }} / M
$$

$$
\mathrm{h}_{1}^{\perp \mathrm{u}}<0 \Rightarrow \Delta>0
$$

$$
h_{1}{ }^{\perp d}<0 \Rightarrow \Delta>0
$$

## T-even TMD: overlap represention

need to define the state with polarization along $\hat{\mathbf{s}}_{\mathrm{T}}=(\cos \phi, \sin \phi)$
$U(P, \uparrow)=\frac{1}{\sqrt{2}}\left(U(P,+)+e^{i \phi} U(P,-)\right)$
$U(P, \downarrow)=\frac{1}{\sqrt{2}}\left(U(P,+)+e^{i(\phi+\pi)} U(P,-)\right) \zeta \quad \psi_{\lambda_{q}}^{\lambda_{N}}=\sqrt{\frac{p^{+}}{(P-p)^{+}}} \frac{\bar{u}\left(p, \lambda_{q}\right)}{p^{2}-m^{2}} \mathcal{y}_{s}\left(p^{2}\right) U\left(P, \lambda_{N}\right)$
agree with Barone, Ratcliffe, Transverse Spin Physics
(World Scientific, USA, 2003)

$$
\begin{array}{ll}
D=s & \lambda_{s}=\varnothing \\
D=a & \lambda_{a}= \pm
\end{array}
$$

$$
g_{1 L}^{D}\left(x, \mathbf{p}_{T}^{2}\right)=\frac{1}{16 \pi^{3}} \sum_{\lambda_{D}}\left[\left|\psi_{+, \lambda_{D}}^{+}\right|^{2}-\left|\psi_{-, \lambda_{D}}^{+}\right|^{2}\right]
$$

$$
\frac{\mathbf{p}_{T} \cdot \widehat{\mathbf{s}}_{T}}{M} g_{1 T}^{D}\left(x, \mathbf{p}_{T}^{2}\right)=\frac{1}{16 \pi^{3}} \sum_{\lambda_{D}}\left[\left|\psi_{+, \lambda_{D}}^{\uparrow}\right|^{2}-\left|\psi_{-, \lambda_{D}}^{\uparrow}\right|^{2}\right]
$$

$$
\frac{\mathbf{p}_{T} \cdot \widehat{\mathbf{s}}_{q T}}{M} h_{1 L}^{\perp D}\left(x, \mathbf{p}_{T}^{2}\right)=\frac{1}{16 \pi^{3}} \sum_{\lambda_{D}}\left[\left|\psi_{\uparrow, \lambda_{D}}^{+}\right|^{2}-\left|\psi_{\downarrow, \lambda_{D}}^{+}\right|^{2}\right]
$$

$$
\frac{\widehat{\mathbf{s}}_{T} \cdot \widehat{\mathbf{s}}_{q T}}{M} h_{1 T}^{D}\left(x, \mathbf{p}_{T}^{2}\right)+\frac{\mathbf{p}_{T} \cdot \widehat{\mathbf{s}}_{T}}{M} \frac{\mathbf{p}_{T} \cdot \widehat{\mathbf{s}}_{q T}}{M} h_{1 T}^{\perp D}\left(x, \mathbf{p}_{T}^{2}\right)=\frac{1}{16 \pi^{3}} \sum_{\lambda_{D}}\left[\left|\psi_{\uparrow, \lambda_{D}}^{\uparrow}\right|^{2}-\left|\psi_{\downarrow, \lambda_{D}}^{\uparrow}\right|^{2}\right]
$$

Deep Inelastic Scattering:
$e p \rightarrow e^{\prime} X$
usefulness of an expansion in powers of $1 / Q$, besides that in

DIS regime: powers of $\alpha_{s}$ (pQCD)
$Q^{2}=-(\nu, \mathbf{q})^{2} M^{2}$
$\nu=E-E^{\prime} \gg M^{2}$
$x_{B}=Q^{2} / 2 M \nu \quad$ fixed
$\sigma \sim L_{\mu \nu} W^{\mu \nu} \rightarrow$ Hadronic tensor: information on the hadron internal dynamics (low energy $\Rightarrow$ non-pert. QCD), encoded in terms of structure

Leptonic tensor:
known at any order in PQED
functions, with SCAUING properies ( $Q$-independence) in DIS regime

PARTON MODEL: - almost free (on shell) pointlike partons

- hard/soft factorization theorems: convolution between hard elementary cross section and soft (non pert.) and universal parton distribution functions $=>$ PDF
$2 M W^{\mu \nu}(q, P, S)=\frac{1}{2 \pi} \sum_{X} \int \frac{d^{3} \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 P_{X}^{0}}(2 \pi)^{4} \delta^{(4)}\left(q+P-P_{X}\right)$

$$
\times\langle P, S| J^{\mu}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| J^{\nu}(0)|P, S\rangle
$$

Fourier transforming the Dirac delta:
$\Rightarrow$ DIS kinematical dominance: $\xi^{2} \simeq 0$ $2 M W^{\mu \nu}(q, P, S)=\frac{1}{2 \pi} \int d^{4} \xi e^{i q \cdot \xi}\langle P, S| \underbrace{J^{\mu}(\xi) J^{\nu}(0)}|P, S\rangle$

## Light-Cone quantization!

In the PARTON MIODE, at tree level and LFADING TVIST (leading order in 1/Q): incoherent sum of interactions with single quarks
$2 M W^{\mu \nu}(q, P, S)=\sum_{f} e_{f}^{2} \int d^{4} p \delta\left((p+q)^{2}-m^{2}\right) \theta\left(p^{0}+q^{0}-m\right)$

$$
\left.\left.\times \operatorname{Tr} \Phi^{f} p p, P, S\right) \gamma^{\mu}(\not p+\not p+m) \gamma^{\nu}\right]
$$

QUARK-QUARK CORRE_ATOR: probability of extracting a quark $f$ (with momentump) in 0 and reintroducing it at $\xi$
$\Phi_{j i}^{f}(p, P, S)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{-i p \cdot \xi}\langle P, S| \bar{\psi}_{i}^{f}(\xi) \psi_{j}^{f}(0)|P, S\rangle$


$$
=\sum_{X} \int \frac{d \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 P_{X}^{0}}\langle P, S| \bar{\psi}_{i}^{f}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| \psi_{j}^{f}(0)|P, S\rangle \delta^{(4)}\left(P-p-P_{X}\right)
$$

Diagonal matrix elements of billocal operators, built with quark fields, on hadronic states

## Parton Distribution Functions

PDF extractable through projections of the $\Phi$ over particular Dirac structures, integrating over the LC direction - (kinematically suppressed) and over the parton transverse momentum

$$
\begin{aligned}
\Phi_{j i}(\Upsilon, S) & =\left.\frac{1}{2} \int d p^{-} d \boldsymbol{p}_{T} \Phi(p, P, S)\right|_{p^{+}=x P^{+}} \longrightarrow \Phi^{[\Gamma]}(x, S)=\operatorname{Tr}[\Phi(x, S) \Gamma] \\
& \left.=\int \frac{d \xi^{-}}{4 \pi} \mathrm{e}^{-i p \cdot \xi}\langle P, S| \bar{\psi}_{i}(\xi) \psi_{j}(0)|P, S\rangle\right\rangle_{\mid \xi^{+}=\xi_{\perp}=0} \quad \begin{array}{l}
\text { ( Non località ristretta alla } \\
\text { direzione LC }- \text { ) }
\end{array}
\end{aligned}
$$

3 LEADING TVNST projections, with probabilistic interpretation as numerical quark densities:

$$
\left\{\begin{aligned}
f_{1}(x) & =\Phi^{\left[\gamma^{+}\right]}=\int \frac{d \xi^{-}}{4 \pi} e^{-i x P^{+} \xi^{-}}\langle P, S| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} \psi(0)|P, S\rangle \\
\lambda g_{1}(x) & =\Phi^{\left[\gamma^{+} \gamma_{5}\right]}=\int \frac{d \xi^{-}}{4 \pi} e^{-i x P^{+} \xi^{-}}\langle P, S| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} \gamma_{5} \psi(0)|P, S\rangle \quad \mathbf{g}_{1}= \\
S_{T}^{i} h_{1}(x) & =\Phi^{\left[i \sigma^{i+} \gamma_{5}\right]}=\int \frac{d \xi^{-}}{4 \pi} e^{-i x P^{+} \xi^{-}}\langle P, S| \bar{\psi}\left(\xi^{-}\right) i \sigma^{i+} \gamma_{5} \psi(0)|P, S\rangle
\end{aligned}\right.
$$

Chiral odd, and QCD conserves chirality at tree level $\Rightarrow$ NOT involved in Inclusive DIS!
$h_{1}$ Transverse Spin distribution (transverse spin basis)

## Open problems: Proton Spin

Experimental information about the Proton Structure Functions:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \sum_{q} e_{q}^{2} f_{1}^{q}(x) \\
& G_{1}(x)=\frac{1}{2} \sum_{q} e_{q}^{2} g_{1}^{q}(x)
\end{aligned}
$$

measured in unpolarized inlusive DIS; systematic analysis @ HERA, included Q $^{2}$-dependence from radiative corrections (scaling violations)
measured in DIS with longitudinally polarized beam \& target, through the (helicity) Double Spin Asymmetry:

$$
G_{1}(x) \sim A^{\|}=\frac{\sigma\left(l^{\uparrow} N^{\uparrow}\right)-\sigma\left(l^{\uparrow} N^{\downarrow}\right)}{\sigma\left(l^{\uparrow} N^{\uparrow}\right)+\sigma\left(l^{\uparrow} N^{\downarrow}\right)}
$$

From $\boxminus \mathrm{MC}$ @ CERN results ( '80) (+ Isospin and flavour simmetry, QCD sum rules):
$\Delta \Sigma=\sum_{q} \int_{0}^{1} d x g_{1}^{q}(x) \sim 0,2$
Spin sum rule for a longitudinal Proton: $J_{z}^{N}$

small fraction of the Proton Spin determined by the quark spin !

Orbital Angular Momentum contributions:

- not directly accessible
- link with GPD. . .complex extraction!
- Is there any link with PDF?


## Open problems: Single Spin Asymmetries

## Experimental evidence of large Asymmetries in the

 azymuthal distribution (with respect to the normal at the production plane) of the reaction products in processes involving ONE transversely$$
\text { SSA }=\frac{d \sigma\left(H^{\uparrow}\right)-d \sigma\left(H^{\downarrow}\right)}{d \sigma\left(H^{\uparrow}\right)+d \sigma\left(H^{\downarrow}\right)}
$$

polarized hadron

$$
\begin{aligned}
& p N \rightarrow \Lambda^{\uparrow} X \begin{array}{l}
P_{\Lambda}\left(x_{F}\right) \\
x_{F}
\end{array}=x_{1}-x_{2} \\
& \quad \simeq 2\left(p_{\Lambda}\right)_{L} / \sqrt{s}
\end{aligned}
$$

Ex.: Heller et al.,
P.R.L. 41 ('78) 607

$A_{N}\left(x_{F}\right) \quad x_{F}=2\left(p_{\pi}\right)_{L} / \sqrt{s}$
Ex.: Adams et al., STAR
P.R.L. 92 ('04) 171801
$e p^{\uparrow} \rightarrow e^{\prime} \pi^{ \pm} X$
(SIDIS)
Ex.:A Airapetian et al. (HERMES)
Phys. Lett. B562 182 ('05)
(Quite) simple experiments, but difficult interpretation!
At the parton level:

## transverse spin

$\mathrm{SSA}=\frac{d \sigma\left(q^{\uparrow}\right)-d \sigma\left(q^{\downarrow}\right)}{d \sigma\left(q^{\uparrow}\right)+d \sigma\left(q^{\downarrow}\right)} \sim \frac{\langle\uparrow \mid \uparrow\rangle-\langle\downarrow \mid \downarrow\rangle}{\langle\uparrow \mid \uparrow\rangle+\langle\downarrow \mid \downarrow\rangle}$


$$
|\uparrow / \downarrow\rangle=(|+\rangle \pm i|-\rangle) / \sqrt{2}
$$


helicity/chirality

## 2 conditions for non-zero SSA:

1) Existence of two amplitudes $\mathcal{M}\left[\gamma^{*} p\left(J_{z}^{p}\right) \rightarrow F\right]$, with $J_{z}^{p}= \pm \frac{1}{2}$, coupled to the same final state $F$
2) Different complex phases for the two amplitude: the correlation is linked to the imaginary part of the interference $\operatorname{Im}\left[\mathcal{M}^{*}(1 / 2) \mathcal{M}(-1 / 2)\right]$

## But :

( $\mathrm{p}_{\mathrm{T}}$-dependence integrated away)

1) $Q C D$, in the massless limit $(\lambda=\phi 1)$ and in collinear factorization, conserves chirality $\Rightarrow$ helicity flip amplitudes suppressed !


$$
\begin{aligned}
M & \sim \bar{u}_{\lambda^{\prime}} \Gamma u_{\lambda} \\
& \sim \bar{u}_{\lambda^{\prime}}\left(1-\lambda^{\prime} \gamma_{5}\right)\left(1-\lambda \gamma_{5}\right) \Gamma u_{\lambda} \\
& \sim \delta_{\lambda \lambda^{\prime}} \bar{u}_{\lambda^{\prime}} \Gamma u_{\lambda}+o\left(\frac{m_{q}}{E_{q}}\right)
\end{aligned}
$$

$$
\binom{\frac{1+\lambda \gamma_{5}}{2} u_{\lambda}=u_{\lambda}}{\bar{u}_{\lambda} \frac{1-\lambda \gamma_{5}}{2}=\bar{u}_{\lambda}}
$$

2) Born amplitudes are real !

## Need to include transverse momenta and processes beyond tree level !

## Origin of T- odd structures

T-odd PDF initially believed to be zero (Collins) due to Time-Reversal invariance of strong interactions. In 2002, however, computation of a non-zero Sivers function in a simple model.
(J. C. Collins, Nucl. Phys. B396,
S. J. Brodsky, D. S. Hwang and I. Schmidt, Phys. Lett. B530)

## What produces the required complex phases NOT invariant under (naive) Time-Reversal?

The $\Phi$ correlator involves billocal operators and QCD is based on the invariance under Gauge (ì.e. local) transformations of colour SU(3)
$\bar{\psi}(\xi) \psi(0) \longrightarrow \bar{\psi}(\xi) U_{\left[0, \xi^{-}\right]}\left[\equiv e^{-i g \int_{0}^{\xi^{-}} d w \cdot A(w)}\right] \psi(0) \quad \begin{gathered}\text { correct Gauge Invariant } \\ \text { definition } \\ \text { Gauge Link }\end{gathered}$
Every link can be series expanded at the wanted ( $n$ ) order, and can be interpretated as the exchange of $n$ soft gluons on the light-cone
$U_{\left[0, \xi^{-}\right]}=\left.\sum_{n=0}^{\infty}(-i g)^{n} \int_{0}^{\xi^{-}} d w_{1}^{-} A^{+}\left(w_{1}\right) \ldots \int_{w_{n-1}}^{\xi^{-}} d w_{n}^{-} A^{+}\left(w_{n}\right)\right|_{w_{i}^{+}=0, \mathbf{w}_{T}=\mathbf{0}_{T}} \overrightarrow{\overrightarrow{\mathrm{P}}} \boldsymbol{\Phi}$

[^0]If there is also $p_{\mathrm{T}}$-dependence, twist analysis reveals that the leading order contributions come from both $A^{+}$and $A_{T}\left(\right.$ at $\left.\infty^{-}\right)=>$NON-trivial link structure, not reducible to identity with $A+=0$ gauge

## But is there a real Time Reversal invariance violation?

Altough QCD Lagrangian contains terms that would allow it, experimentally there is no evidence of CP- (and hence T-) violation in the strong sector (no neutron e.d.m.)

Sivers and Boer-Mulders functions are associated with coefficients involving 3 (pseudo)vectors, thus changing sign under time axis orientation reversal. This operation alone is defined Naive Time Reversal. In this sense we speak about Naive T-odd distributions!

Nevertheless, Time Reversal operation in general also requires an exchange between initial andl final states!

If such an operation turns out not to be trivial, due to the presence of complex phases in the S matrix elements, there could be Naive T-odd spin effects $\left(\left|T_{i f}\right|^{2} \neq\left|\widetilde{T}_{i f}\right|^{2}\right)$ in a theory which in general $\langle f| S|i\rangle=\langle i| S|f\rangle^{*}$ shows CP- and hence T-invariance $\left(\left|\left|T_{i f}\right|^{2}=\left|\widetilde{T}_{f i}\right|^{2}\right)\right.$ !

Naive T-odd Fragmentation Functions (e. g. Collins function) are easier to justify, because the required relative phases can be generated by Final State Interactions (FSI) between leading hadron and jets, dinamically distinguishing initial and final states.

Hadronic tensor for SIDIS, at leading twist and at first order in the strong coupling $g$ :


$$
\Phi^{+}(p, l, P, S)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{+i p \cdot \xi} e^{+i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) g A^{+}(\eta) \psi(\xi)|P, S\rangle
$$

## EIKONAL Approximation :

It can be shown that within this approximation the one-gluon loop contribution represents the $\mathcal{O}(g)$ term in a series expansion of the

Gauge Link operator!
the relevant Correlator is now (integration over gluon momentum):

$$
\begin{aligned}
& \gamma^{-} \frac{\not k-l+m}{(k-l)^{2}-m^{2}} A^{+}(\eta) \simeq \gamma^{-} \frac{\not k-l+m}{-2 k^{-} l^{+}+i \varepsilon} A^{+}(\eta) \\
& \simeq\left[\frac{\gamma^{-} l}{2 k^{-} l^{+}-i \varepsilon}-\frac{2 k^{-}}{2 k^{-} l^{+}-i \varepsilon}+\frac{(\not k-m)}{2 k^{-} l^{+}-i \varepsilon} \gamma^{-}\right] A^{+}(\eta) \\
& \simeq(-) \frac{1}{l^{+}-i \varepsilon} A^{+}(\eta) \text { (A V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B656) }
\end{aligned}
$$

$$
\Phi^{+}(p, P, S)=\int d^{4} l \frac{1}{l^{+}-i \varepsilon} \Phi^{+}(p, l, P, S)
$$

For the Drell-Yan process (hadronic collisions), the sign of the $\mathbf{k}$ momentum is instead reversed and the analogous eikonal approximation now gives: $\quad\left(l^{+}-i \varepsilon\right) \longrightarrow\left(l^{+} \oplus i \varepsilon\right)$

Sivers function depends on the imaginary part of an interference between different amplitudes:
$\left.\Rightarrow f \frac{\perp}{1 T}\right|_{S I D I S}=-\left.f_{1 T}^{\perp}\right|_{D Y} \quad$ (NON-Universality!)


[^0]:    Gauge Link = Residual active quark-spectators Interactions, NOT invarianti under Time Reversal!

