Azimuthal Asymmetries in Drell-Yan Lepto-Production in Early Stages at FAIR

Marco Destefanis

for the PANDA Collaboration

Università degli Studi di Torino

The Nucleon Structure

Torino (Italy) March 23-27, 2009

Overview

- Motivation
- Drell-Yan process and background
 - > A. Bianconi Drell-Yan generator
 - Cut studies
- Investigation of Drell-Yan asymmetries
- Summary

Drell-Yan Process and Background

Drell-Yan: pp -> μ⁺μ⁻X

cross section $\,\sigma \sim 1\,\text{nb}\,$ @ s = 30 GeV^2

• Background: pp -> π⁺π⁻X, 2π⁺2π⁻X,.....

cross section $\sigma \sim 20-30 \ \mu b$ $m_{\mu} = 105 \ MeV/c^2$; $m_{\pi} 145 \ MeV/c^2$ average primary pion pairs: ~ 1.5

Background studies: needed rejection factor of 10⁷

Drell-Yan Asymmetries

 $D = N(cos2\phi < 0)$

Asymmetry $A = \frac{U-D}{U+D}$

TMD: K_T-dependent Parton Distributions

Twist-2 PDFs
$$f_1(x) = \int d^2 k_T f_1(x,k_T) p \underbrace{s \bigwedge_{t_T} p = xP + k_T}_{t_T}$$

 $f_1 = \bigcirc$
 $g_{1L} = \bigcirc - \bigcirc$
 $h_{1T} = \bigcirc - \bigcirc$
 $f_{1T} = \bigcirc - \bigcirc$
 $h_{1} = \bigcirc - \bigcirc$
 $h_{1} = \bigcirc - \bigcirc$
 $h_{1} = \bigcirc - \bigcirc$
 $h_{1T} = \bigcirc - \bigcirc$

Di-Lepton Production pp -> I⁺I⁻X

Phase space for Drell-Yan processes

A. Bianconi Drell-Yan Generator for pp

- Antiproton beam
- Polarized/Unpolarized beam and target
- Drell-Yan cross section from experimental data
- Selects event depending on the variables:

x₁, **x**₂, **P**_T, ϑ, φ, φ₅

from a flat distribution

• Cross section: $\frac{d\sigma}{dx_1 dx_2 dP_T d\Omega} = \frac{K}{S} \cdot S(x_1, x_2) \cdot S'(P_T) \cdot A(\vartheta, \phi, \phi_S)$

A. Bianconi, Monte Carlo Event Generator DY_AB4 for Drell-Yan Events with Dimuon Production in Antiproton and Negative Pion Collisions with Molecular Targets, internal note (PANDA collaboration)

A. Bianconi, M. Radici, *Phys. Rev.* **D71**, 074014 (2005) & **D72**, 074013 (2005)

^[1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014

PANDA Detector Setup Design

PANDA Detector Setup Design

Signal: A. Bianconi Drell-Yan generator Background: PYTHIA8 generator Framework: Muon Independent Simulation Software (MISS) Next step: complete the work in PANDAROOT

ABDYG Signal Distribution

Background and Cuts

- Sources of background
- Primary background: Primary π & Secondary μ from Primary π
- Secondary background:

Primary π & Secondary μ from Primary π Secondary π & Secondary μ from Secondary π

Cuts and their effect on signal

Rejection factor of 10⁷

	Iron	At least 1 hit in the first 2 layers	q _T > 0.75 GeV/c
Signal	Linear rejection	Reject 30% of	~ 35% of the signal is reconstructed
Primary Background	Kinematic refit 2103 (Rejection $\approx 10^4$
Secondary Background	Almost no effect	Rejection $\approx 10^4$	Rejection >5.106

DY Asymmetries @ Vertex

DY Asymmetries @ B(20cm)-E(34cm)

Statistical errors for 500KEv generated

Summary

- Interest on Drell-Yan studies
 - $1.5 < M_{\mu\mu} < 2.5 \ GeV/c^2$
 - Cuts for background rejection

Rejection factor achieved for secondary background: > 5 10⁶ Kinematically constrained refit still to be investigated

- Few months of data taking are enough to:
 - > evaluate unpolarised and single-spin asymmetries with good accuracy \Rightarrow investigate their dependence on $q_{T,uu}$
- Extensive simulations needed on the GRID (~10⁸ Ev) with PANDAROOT in order to:
 - check rejection factor
 - set kinematic cuts

Summary

- $B_{20cm Fe} \times E_{34cm Fe}$ rejection factors with
 - q_{T,µµ} > 0.75 GeV/c
 - reaction vertex in the target region
 - $1.5 < M_{\mu\mu} < 2.5 \ GeV/c^2$
 - kinematically constrained refit still to be investigated
 Rejection factor achieved for secondary background: > 5 10⁶
- Few months of data taking are enough to:
 - > evaluate unpolarised and single-spin asymmetries with good accuracy \Rightarrow investigate their dependence on $q_{T,\mu\mu}$
- Extensive simulations needed on the GRID (~10⁸ Ev) with PANDAROOT in order to:
 - check rejection factor
 - set kinematic cuts

MISS

(credits G.C. Serbanut)

Muon Independent Simulation Software

Pure GEANT4 simulation

ROOT used for storage and plots

• Geometry:

magnet design: nov-dec 2007 release magnetic field: Genova design

- Muon Detector: 1 layer each 2cm of iron
 Sensible volumes filled with Ar+CO₂
- Results presented in the Physics Book

Hadronic Background Distribution

Hadronic Background Distribution

ABDYG Signal Distribution

Kinematic cut:

At least 1 hit in the first 2 layers

Hadronic Background Distribution

ABDYG Signal Distribution

Hadronic Background Distribution

Computing Environments - INFN Grid

Motivation

CPU time consumption

collect statistics

- > Operational
- Nutshell with precompiled FairSoft, PandaRoot, gcc and system libraries 10000

• Jobs:

signal events

(credits G.C. Serbanut)

Jobs are started with scripts (BASH+AWK) Nutshell is moved to the local machine (~40s) Environment variables set

Run process (40 min)

Output send to the database and saved (2min, 910MB) Nutshell and output removed from the local machine (few s)

Full automatization

Computing Environments - INFN Grid

Computing Environments – INFN Grid (credits G.C. Serbanut) Schema of PandaRoot simulations on the INFN Grid

PandaRoot on GRID

Computing Environments - Farm

(credits G.C. Serbanut)

Operational

- Nutshell with precompiled FairSoft, PandaRoot, gcc and system libraries
 10000
- Jobs:

10000 signal events

- Jobs are started with scripts (BASH+AWK) Nutshell is created and then moved to the local machine (few s)
 Jobs are running locally (40 min)
 Output moved to storage elements (2min, 910MB)
 Clean the computing element (few s)
- Check free space on disks

Balance of the amount of data on storage elements

Computing Environments - Farm

Computing Environments - Farm (credits G.C. Serbanut)

Schema of PandaRoot simulations on the Torino Farm

- Computing Environments Cluster (credits G.C. Serbanut)
 4 clients with 2 CPUs dual core -> 16 threads at once
- Jobs are started with scripts (BASH+AWK)
 - > Passwordless ssh connection among all the machines

(SSH v.2)> Clean input/output (few s) Copy locally input data (few s) Start and monitor the simulations (35 min)

Retrieving the data (2min, 910MB)

Computing Environments - Cluster

Automatization

L1: end user computer (tester / developer /analyzer)

DY @ 15 GeV/c – $\bar{p}p \rightarrow \mu^+\mu^-X$

^[1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014