k_t -Factorisation in the Drell-Yan Process

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Lecture week of the European Graduate School Complex Systems of Hadrons and Nuclei March 2009

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

- Motivation
 - Exclusive Drell-Yan observables give important insights into nucleon structure
 Problems:
 - Standard pQCD parton model description needs "K-factor" to reproduce data
 - PANDA @ FAIR will allow measurements of the Drell-Yan Process down to small energies ⇒ non-perturbative effects become important
 - Account for these shortcomings by improving standard parton model description

The Drell-Yan Process $(pp \rightarrow l^+ l^- X)$

- Parton model:
 - "Infinite momentum frame"
 - \Rightarrow partons collinear carrying momentum fraction x

Drell-Yan

- Factorisation:
 - $d\sigma = \int \sum_{i} e_{q_i}^2 f_i(x) d\hat{\sigma}(x)$
 - hard subprocess $(d\hat{\sigma})$
 - parton distribution functions (f_i)
- Accessible: $d^2\sigma/(dMdx_F)$
- Not accessible:
 p_T-spectrum of DY-pair

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Invariant mass distribution

E439, S=750 GeV, x_F'=0.1

K-factor necessary to reproduce absolute values

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Quark transverse momentum

- Parton model: Neglect initial k_T of quarks ⇒ p_T-spectrum of DY-pairs inaccessible in LO calculation!
- Initial *k*_T-approach:
 - $d\sigma = \int \sum_{i} e_{q_i}^2 f_i(x) \cdot g(\vec{k}_t) \cdot d\hat{\sigma}(x)$
- Shape of p_T-spectrum reproduced, still K-factor needed to yield absolute values
 First improvement: Include initial transverse momentum with full kinematics ⇒ dô(x) → dô(x, kt)
 Problem: Result is totally off data

Full kinematics

Simple x-independent Gaussian for initial k_t -distribution: Slope and height not reproduced

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Interdependency of x and k_t

- Gaussian description $g(\vec{k}_t) \sim \exp(-k_t^2/D^2)$ fails in full kinematics \Rightarrow no k_t -factorisation!
- Reason: For $x \to 0$ is $k_t^2 \sim x$
- Then Gaussian does not suppress for small x, but sea quark distributions diverge!
- Unphysical behavior demands
 x-dependent k_t-distribution
- Better choice: $\exp(-k_t^2/(x/x_{LO} \cdot D^2))$
- x_{LO} is the x obtained from the collinear parton model

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Probed range of x_1 and x_2

M=7.5, p_T=0.2 M=7.5, p_T=1.0 0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1 × 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0 0 X₁ X₁ M=7.5, p_T=5.0 M=7.5, p_T=9.0 0.5 0.4 0.3 0.2 0.1 0 0.5 0.4 0.3 0.2 0.1 ž 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0 0 Xı Xı

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

E866: k_t -spectrum for $S = 1500 \text{ GeV}^2$

4.2 < M < 5.2 [GeV]

7.2 < M < 8.7 [GeV]

- Overshoot for x-independent k_t-distribution (blue) is worse for larger invariant Mass M
- x-dependent approach (purple) agrees with collinear parton model + simple initial Gaussian k_t

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Next to Leading Order

- NLO calculation reduces the necessary K-factor in invariant mass distribution
- However: Dynamically generated p_T-spectrum is divergent for p_T → 0 in NLO
- Higher twist effects are important to describe data

Summary and Outlook

- pQCD parton model has deficiencies in describing exclusive DY observables
- Simple improvement by using full kinematics for initial parton transverse momentum with standard Gaussian smearing fails
- x-dependent initial k_t-distribution necessary to reproduce parton model results
- Next steps:
 - Include NLO processes with full kinematics and study effects of off-shell quarks in that approach
 - Make predictions for PANDA @ FAIR, where non-pertubative effects become more important

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel