Motivation	Disc DIRC 00000000	Further Investigations	Summary	Appendix

The Disc DIRC Čerenkov Detektor at PANDA

Benno Kröck Avetik Hayrapetyan Irina Brodski Klaus Föhl Marko Zühlsdorf Michael Düren Michael Sporleder Oliver Merle Peter Koch

Justus Liebig Universität Gießen, Germany

HANUC Lecture Week 2009, Torino

Motivation	Disc DIRC	Further Investigations	Summary	Appendix
Outline				

- FAIR
- PANDA

2 Disc DIRC

- Particle Identification
- Focussing Light Guides Design
- Time of Propagation Design (ToP)

3 Further Investigations

- Photon sensors
- Dispersion

Motivation ●○○	Disc DIRC	Further Investigations	Summary	Appendix
FAIR				

Facility for antiproton and ion research

New accelerator facility

- Gesellschaft f
 ür Schwerionenforschung (GSI)
- Darmstadt, Germany

Motivation ○●○	Disc DIRC	Further In	vestigations	Summary	Appendix
PANDA					

Antiproton **an**ihilation at **Da**rmstadt

Research

- Strong interaction, confinement
- Structure of hadronic mass
- Search for new hadrons: hybrid/glueball states

- Fixed target
- Antiproton beam of 1.5 ... 15 GeV

Motivation ○○●	Disc DIRC	Further Investigations	Summary	Appendix
PANDA				
Target spect	rometer			
Solenoid Supply Box Upstream Door Solenoid Sub-Colls Solenoid Sub-Colls Solenoid Cryostat Beam Pipe Micro-Vertex Detector Central Tracker Barrel DIRC Barrel DIRC	Torget Produc	tion Instrumented Flux Return Yoke Barrel Downstream Do Muon Filte Disc DIRC Drift Detect GEMs ElectroMk Calorime Nuon Rar	or r : tors agnetic ter	► FSpec

- Little space for Čerenkov detector in forward region
- Disc DIRC in magnetic field

Motivation ○○●	Disc DIRC	Further Investigations	Summary	Appendix
PANDA				
Target spectr	ometer			
Solenoid Supply Box Upstream Door Solenoid Sub-Colls Solenoid Cryostat Beam Pipe Micro-Vertex Detector Central Tracker Barrel DIRC Barrel TOF	Target Product	cion Instrumented Flux Return Yoke Barrel Downstr Mu Di G G G G G G G G G G G G G G G G G G	eam Door nn Filter is DIRC i Detectors XIS sctroMagnetic lorimeter ion Range stem	► FSpec

- Little space for Čerenkov detector in forward region
- Disc DIRC in magnetic field

- Čerenkov light is emitted in disc (fused silica, 2 cm thick).
- Photons are propagated to detector by total internal reflexion.
- Particle identification possible, if momentum and velocity are known
 - Momentum from PANDA tracking detector
 - Velocity from Čerenkov angle $\left(\cos\theta = \frac{1}{n\beta}\right)$

Focussing Light Guides	s Design					
Principle — focussing light guides						

Determination of Čerenkov angle

- First space coordinate from light guide position
- Second space coordinate from multi pixel photon detector

Principle — time of propagation						
Time of Propagation Design (ToP)						
Motivation 000	Disc DIRC	Further Investigations	Summary	Appendix		

Setup

- Octagonal disc
- Dichroic mirrors in alternating order between disc and sensors split wavelength spectrum into two ranges (λ < 500 nm or λ > 500 nm)
 - Reduction of dispersion effects
 - Increase of path lengths

Determination of Čerenkov angle

- One space coordinate from position of photon detector
- Time of propagation

Monte Carlo	simulation				
Time of Propagation Design (ToP)					
Motivation	Disc DIRC	Further Investigations	Summary	Appendix	

4 GeV pion

- \approx 420 Čerenkov photons emitted
- 273 photons propagated by total internal reflexion
- \approx 70 photons detected in reality (depending on photon detection efficiency)

Disc DIRC ○○○○●○○○	Further Investigations	Summary	Appendix			
Time of Propagation Design (ToP)						
Reconstruction						
	Disc DIRC 000000000 gn (ToP) ON	Disc DIRC Further Investigations	Disc DIRC Further Investigations Summary 000000000000000000000000000000000000			

- No start signal
- Short and long paths are needed

- Calculation of time of propagation:
 - Kaon (red)
 - Pion (green)
- Comparison with simulation (blue) or finally measurement identifies particle.

Motivation	Disc DIRC	Further Investigations	Summary	Appendix	
Time of Propagation Design (ToP)					
Prototype)				

- We have a working prototype.
- Test beam experiment was made in October last year.
- Measurements with cosmics are running right now.

Motivation	Disc DIRC	Further Investigations	Summary	Appendix
	00000000			

Results from cosmics measurements with prototype

Time of propagation calculated for relativistic particles:

Motivation	Disc DIRC ○○○○○○●○	Further Investigations	Summary	Appendix
Time of Propagation	Docian (ToP)			

Results from cosmics measurements with prototype

Time of propagation calculated for relativistic particles:

Motivation	Disc DIRC	Further Investigations	Summary	Appendix
	00000000			

Results from cosmics measurements with prototype

Time of propagation calculated for relativistic particles:

Motivation	Disc DIRC ○○○○○○●	Further Investigations	Summary	Appendix
Time of Propagatio	n Dosign (ToP)			

Results from cosmics measurements with protoype

Calculated time differences: • 0.40 ns

Motivation	Disc DIRC ○○○○○○●	Further Investigations	Summary	Appendix
Time of December 1	- Designer (T-D)			

Results from cosmics measurements with protoype

Calculated time differences:

Motivation	Disc DIRC ○○○○○○●	Further Investigations	Summary	Appendix
-				

Results from cosmics measurements with protoype

Motivation 000	Disc DIRC	Further Investigations ●○	Summary	Appendix
Photon sensors				

Requirements

- Very good time resolution ($\sigma \approx$ 40 ps)
- Low dark count rate
- Life time
- Operation in magnetic field ($B \approx 2 \text{ T}$)
- Radiation hardness

Candidates

- Conventional PMTs: not working in magnetic field
- MCPPMTs: short life time
- G-APDs: high dark count rate, eventually radiation damage

Solutions

- MCPPMTs with protection layer?
- Cooled G-APDs?
- Anything else?

Motivation 000	Disc DIRC 00000000	Further Investigations ○●	Summary	Appendix
Dispersion				

Effects in fused silica

At decreasing wavelength

- n_{phase} increases.
 Čerenkov angle increases. Time of propagation decreases.
- n_{group} increases. Group velocity decreases. Time of propagation increases.

Further research to reduce dispersion effects

- Cutting out parts of wavelength spectrum
- Chromatic correction by achromatic units or software
- Splitting spectrum with dichroic mirrors as described above

Dispersion	Motivation	Disc DIRC	Further Investigations ○●	Summary	Appendix
	Dispersion				

Effects in fused silica

At decreasing wavelength

- n_{phase} increases.
 Čerenkov angle increases. Time of propagation decreases.
- n_{group} increases. Group velocity decreases. Time of propagation increases.

Further research to reduce dispersion effects

- Cutting out parts of wavelength spectrum
- Chromatic correction by achromatic units or software

• Splitting spectrum with dichroic mirrors as described above

Motivation 000	Disc DIRC	Further Investigations	Summary	Appendix
Summary				

- Disc DIRC will provide particle identification at PANDA.
- Compact detector
- Two designs:
 - Focussing light guides
 - Time of Propagation

Motivation 000	Disc DIRC	Further Investigations	Summary	Appendix
Forward s	pectrometer			

I Back

Motivation	Disc DIRC	Further Investigations	Summary	Appendix
Secondary	events			

Motivation	Disc DIRC	Further Investigations	Summary	Appendix
Secondary	v events			

- Right sensor can see emitted cherenkov light.
- Left sensor does not see anything.

Motivation 000	Disc DIRC	Further Investigations	Summary	Appendix			
Voltage supply							

Problem

Noise from high voltage modules

Solution

Ferrites in feed lines

Motivation	Disc DIRC 00000000	Further Investigations	Summary	Appendix
Voltage div	ider boards			

Problem

Our boards were evil:

- Capacitances
- Long unshielded parts in signal cables

Solution

- Voltage divider resistors directly mounted on the MCPs
- Signal cables directly connected to the MCPs