Monte Carlo Simulation of $p\overline{p}
ightarrow \gamma\gamma$ and $p\overline{p}
ightarrow \gamma\pi^0$ for Panda

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda

Michael Düren, Irina Brodski, Zoltan Gagyi-Pàlffy

March 26, 2009

12th HANUC Lecture Week Torino 23rd-27th March 2009

Interesting Uncharged Processes and Background

 $p\overline{p} \rightarrow \gamma\gamma$

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda

-Processes

Why are this processes that interesting?

 $p\overline{p} \rightarrow \gamma \pi^0$

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda \Box Processes

Cross Sections

Cross Sections of the Processes


```
Monte Carlo Simulation of p\overline{p} \to \gamma\gamma and p\overline{p} \to \gamma\pi^0 for Panda

\square Processes

\square Separation
```

Preparing the Separation

- Sorting the bumps by Energy in CMS. Each bump stands in best case for exactly one photon: Bump1→energy() > Bump2→energy() > Bump3→energy() > Bump4→energy()...
- 2. Kinematical cuts.

Monte Carlo Simulation of $p\overline{p} \rightarrow \gamma\gamma$ and $p\overline{p} \rightarrow \gamma\pi^0$ for Panda \square Processes \square Separation

Criteria for $p\overline{p} \rightarrow \gamma \gamma$

- Only 2 valid Bumps! (ca. 75% of γγ and ca. 2% of γπ⁰ events.)
- ▶ Bump1→energy()+Bump2→energy() $\simeq E_{max} > 0.96 * \sqrt{s}$
- \angle (*Bump*1, *Bump*2) π < 0.008.
- ► $|Bump1 \rightarrow energy()-Bump2 \rightarrow energy()| < 0.04.$
- (No reconstructable π^0 mass from Bump2 and Bump3)

Energy Recontruction ($\sqrt{s} = 4 GeV$)

3 largest bumps and their sum (red)

∠(Bump1,Bump2)

Energy difference of Bump1 and Bump2

Hitsum in Event

Hitsum in the event

Only 2 Bumps (ca. 75% of $\gamma\gamma$ and ca. 2% of $\gamma\pi^0$ events.)

Only 2 Bumps (ca. 75% of $\gamma\gamma$ and ca. 2% of $\gamma\pi^0$ events.)

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda

- Processes

Comparing to Simulated Data

Criteria for $p\overline{p} \rightarrow \gamma \pi^0$

- ▶ Bump1→energy()+Bump2→energy()+Bump3→energy()> $0.96\sqrt{s}$
- Reconstructable π^0 mass for exactly one pair of bumps.

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda \Box Processes

Efficiency

Efficiency $p\overline{p} \rightarrow \gamma \gamma$

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda \Box Processes

- Efficiency

Efficiency $p\overline{p} \rightarrow \gamma \pi^0$

Monte Carlo Simulation of $p\overline{p} \to \gamma\gamma$ and $p\overline{p} \to \gamma\pi^0$ for Panda $\square_{\text{Next Steps}}$

Outlook

...

- Look at shower shapes
- Use hits in bump and not in event
- ► Analyse other uncharged channels e.g. $p\bar{p} \rightarrow \eta_c \pi^0 \rightarrow \gamma \gamma \gamma \gamma$ with backgroung: $p\bar{p} \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma$