Outline	Motivation	Bethe-Salpeter Equation	EoS	Summary and Outlook

3-Body Contributions to the Density Dependent NN-Interaction

A. Ataie and H. Lenske

Justus-Liebig-Universität Gießen Institut für Theoretische Physik I

20 March 2009

Deutsche Forschungsgemeinschaft

Outline	Motivation	Bethe-Salpeter Equation	EoS	Summary and Outlook
Outline				

- Motivation
- Scattering Amplitude
- Equation of State
- Summary and Outlook

A. Ataie and H. Lenske 3-Body Contributions to the Density Dependent NN-Interactio

A. Ataie and H. Lenske 3-Body Contributions to the Density Dependent NN-Interactio

In-Medium Effects

in-medium effects

In-medium nucleons are embedded into a background of other nucleons with which they interact as well.

- Pauli principle
- three and more body effects

Two Body Scattering Amplitude

Bethe-Salpeter

$$K_2 = V_2 + V_2 G_2 Q_F K_2$$

with:

- V₂: two-body interaction
- G₂: NN propagator
- Q_F : Pauli-projector depending on the Fermi-momentum k_f

formal solution

$$\mathcal{K}_2(q',q,
ho) = rac{1}{1-V_2 G_2 Q_F} \cdot V_2(q',q)$$

Scattering Amplitude for Full Interaction

full interaction

$$V(q',q,\rho) = V_2(q',q) + V_3(q',q,\rho)$$

with V_3 : medium-modified interaction

modified Bethe-Salpeter equation

$$K = V_2 + V_3 + (V_2 G_2 Q_F + V_3 G_3 Q_F) K$$

EoS

Outline	Motivation	Bethe-Salpeter Equation	EoS	Summary and Outlook

formal solution for full amplitude

$$K = rac{1}{1 - V_3 G_3 Q_F} (V_2 + V_2 G_2 Q_F) K + \underbrace{rac{V_3}{1 - V_3 G_3 Q_F}}_{K3}$$

with:

•
$$\chi = \frac{1}{1 - V_3 G_3 Q_F}$$
 : susceptibility tensor

• $K_2 = (V_2 + V_2 G_2 Q_F) K$: two body scattering amplitude

redefined scattering amplitude

$$K' = \chi K_2$$

Outline	Motivation	Bethe-Salpeter Equation	EoS	Summary and Outlook
At Bo	taching the susce orn term:	ptibility as a vertex sca $V_2' = \chi V_2$	ling factor	to the 2-body
		$\mathcal{K}' = V_2' + V_2' \mathcal{G}_2 \mathcal{Q}_F \mathcal{I}$	K ₂	
for	mal solution			
		$\mathcal{K}' = rac{1}{1-V_2' \mathcal{G}_2 \mathcal{Q}_F} \ .$	V_2'	

Ansatz for 2-body interaction:

$$V_2' = \sum_m \chi_m(\rho) V_m(p^2)$$

Density Dependent Rescaling

density dependent rescaling

$$K' = V'_{2} + V'_{2}G_{2}Q_{F}K_{2} = \sum_{m} z_{m}(\rho)V_{m}(\vec{k}_{1},\vec{k}_{2})$$

with:

$$V_m = rac{4\pi g^2}{m^2} \cdot rac{m^2}{m^2 + p^2} F_m(p)$$

The additional susceptibility tensor χ acting as a density dependent rescaling of the meson-nucleon vertices.

EoS for Infinite Nuclear Matter

ground state energy

$$E = \frac{3}{5}\tau\rho + \frac{1}{2}\rho E_{int}$$

Ansatz for the interaction energy

$$E_{int} = \sum_{m} z_m(\rho) E_m(k_F)$$

with:

$$E_m = N_s N_q \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \Theta(k_F^2 - k_1^2) \Theta(k_F^2 - k_2^2) \\ (V_m^{(D)}(0) + V_m^{(E)}(\vec{k}_1 + \vec{k}_2))$$

Outline	Motivation	Bethe-Salpeter Equation	EoS	Summary and Outlook

EoS for 2 and 3-Body Interaction

EoS for Symmetric Nuclear Matter

Outline	Motivation	Bethe-Salpeter Equation	EoS	Summary and Outlook
EsC for	Duna Nautu	on Mottor		

Summary

- Coming from free NN-Scattering one has to consider in-medium effects
- Three body effects can be described by a density dependent rescaling of the vertices
- Our Ansatz coincides the UIX-interaction for symmetric nuclear and pure-neutron matter

Outlook

- Description of hyper nuclear matter
- Application in nuclear structure calculations