3-Body Contributions to the Density Dependent NN-Interaction

A. Ataie and H. Lenske

Justus-Liebig-Universität Gießen
Institut für Theoretische Physik I

20 March 2009

JUSTUS-LIEBIG-
\square UNIVERSITÄT
GIESSEN

European Graduate School
Complex Systems of Hadrons and Nuclei
Copenhogen - Giefen - Hestirki - Jywaskyla - Tarino

Deutsche
Forschungsgemeinschaft
DFG

Outline

- Motivation
- Scattering Amplitude
- Equation of State
- Summary and Outlook

NN-Interaction

N^{*}, mesons

N , mesons

NN-Interaction

N^{*}, mesons

N, mesons

NN-Interaction

N , mesons

In-Medium Effects

in-medium effects

In-medium nucleons are embedded into a background of other nucleons with which they interact as well.

- Pauli principle
- three and more body effects

Two Body Scattering Amplitude

Bethe-Salpeter

$$
K_{2}=V_{2}+V_{2} G_{2} Q_{F} K_{2}
$$

with:

- V_{2} : two-body interaction
- G_{2} : NN propagator
- Q_{F} : Pauli-projector depending on the Fermi-momentum k_{f}

formal solution

$$
K_{2}\left(q^{\prime}, q, \rho\right)=\frac{1}{1-V_{2} G_{2} Q_{F}} \cdot V_{2}\left(q^{\prime}, q\right)
$$

Scattering Amplitude for Full Interaction

full interaction

$$
V\left(q^{\prime}, q, \rho\right)=V_{2}\left(q^{\prime}, q\right)+V_{3}\left(q^{\prime}, q, \rho\right)
$$

with V_{3} : medium-modified interaction
modified Bethe-Salpeter equation

$$
K=V_{2}+V_{3}+\left(V_{2} G_{2} Q_{F}+V_{3} G_{3} Q_{F}\right) K
$$

formal solution for full amplitude

$$
K=\frac{1}{1-V_{3} G_{3} Q_{F}}\left(V_{2}+V_{2} G_{2} Q_{F}\right) K+\underbrace{\frac{V_{3}}{1-V_{3} G_{3} Q_{F}}}_{K 3}
$$

with:

- $\chi=\frac{1}{1-V_{3} G_{3} Q_{F}}$: susceptibility tensor
- $K_{2}=\left(V_{2}+V_{2} G_{2} Q_{F}\right) K$: two body scattering amplitude

redefined scattering amplitude

$$
K^{\prime}=\chi K_{2}
$$

Attaching the susceptibility as a vertex scaling factor to the 2-body Born term:

$$
V_{2}^{\prime}=\chi V_{2}
$$

$$
K^{\prime}=V_{2}^{\prime}+V_{2}^{\prime} G_{2} Q_{F} K_{2}
$$

formal solution

$$
K^{\prime}=\frac{1}{1-V_{2}^{\prime} G_{2} Q_{F}} \cdot V_{2}^{\prime}
$$

Ansatz for 2-body interaction:

$$
V_{2}^{\prime}=\sum_{m} \chi_{m}(\rho) V_{m}\left(p^{2}\right)
$$

Density Dependent Rescaling

density dependent rescaling

$$
\begin{aligned}
K^{\prime} & =V_{2}^{\prime}+V_{2}^{\prime} G_{2} Q_{F} K_{2} \\
& =\sum_{m} z_{m}(\rho) V_{m}\left(\vec{k}_{1}, \vec{k}_{2}\right)
\end{aligned}
$$

with:

$$
V_{m}=\frac{4 \pi g^{2}}{m^{2}} \cdot \frac{m^{2}}{m^{2}+p^{2}} F_{m}(p)
$$

The additional susceptibility tensor χ acting as a density dependent rescaling of the meson-nucleon vertices.

EoS for Infinite Nuclear Matter

ground state energy

$$
E=\frac{3}{5} \tau \rho+\frac{1}{2} \rho E_{i n t}
$$

Ansatz for the interaction energy

$$
E_{i n t}=\sum_{m} z_{m}(\rho) E_{m}\left(k_{F}\right)
$$

with:

$$
\begin{array}{r}
E_{m}=N_{s} N_{q} \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}} \Theta\left(k_{F}^{2}-k_{1}^{2}\right) \Theta\left(k_{F}^{2}-k_{2}^{2}\right) \\
\left(V_{m}^{(D)}(0)+V_{m}^{(E)}\left(\vec{k}_{1}+\vec{k}_{2}\right)\right)
\end{array}
$$

EoS for 2 and 3-Body Interaction

EoS for Symmetric Nuclear Matter

EoS for Pure-Neutron Matter

Summary and Outlook

Summary

- Coming from free NN-Scattering one has to consider in-medium effects
- Three body effects can be described by a density dependent rescaling of the vertices
- Our Ansatz coincides the UIX-interaction for symmetric nuclear and pure-neutron matter

Outlook

- Description of hyper nuclear matter
- Application in nuclear structure calculations

