PAINUC

The Nuclear Matter studied in a Self Shunted Streamer Chamber exposed to the $T_{\pi} = 68 - 106$ MeV JINR phasotron π beams

PAINUC

Istituto Nazionale di Fisica Nucleare (To/AI/Bs) Dipartimento di Fisica Generale "A. Avogadro" (Torino) Centro Studi e Ricerche "E. Fermi" (Roma) Joint Institute for Nuclear Research (Dubna)

Ivan Gnesi

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

The Nucleon Structure - 12th **HANUC Lecture Week** Turin, 2009, march 23 - 27

Outline

Fields of interest

- 2 Experimental Apparatus
 - The Self Shunted Streamer Chamber
- 3 Event Reconstruction
- 4 Event Recognition: the Artificial Neural Network

5 Results

- Resonances in the nuclear medium
- Nuclear Reaction Mechanisms
- The light nuclear matter at the hadron gas phase transition
- The $\pi
 ightarrow \mu
 u$ decay and the u_{μ} mass

6 Summary and Future

- Resonances activation in nuclear medium at intermediate energies
- Mechanisms of π -light nuclei elastic and inelastic interaction
- The light nuclear matter at the hadron gas phase transition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Resonances activation in nuclear medium at intermediate energies
- Mechanisms of π -light nuclei elastic and inelastic interaction
- The light nuclear matter at the hadron gas phase transition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Resonances activation in nuclear medium at intermediate energies
- Mechanisms of π -light nuclei elastic and inelastic interaction
- The light nuclear matter at the hadron gas phase transition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Resonances activation in nuclear medium at intermediate energies
- Mechanisms of π -light nuclei elastic and inelastic interaction
- The light nuclear matter at the hadron gas phase transition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Experimental Apparatus

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

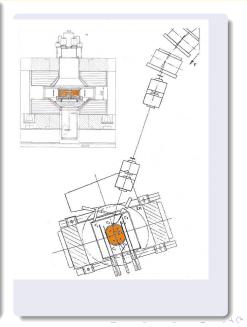
The Laboratory for Nuclear Problem

The Phasotron

The Pion Line

Devices

- Phasotron: channel III $T_{\pi} = 50 - 250 \text{ MeV}$
- Self Shunted Streamer Ch. (SSSC)
- Electromagnet


MC-4A

 $(H = 0.650 \pm 0.005 T)$

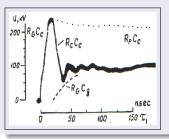
- Scintillators $\boldsymbol{C_1}-\boldsymbol{C_7}$
- High Voltage pulse generator
 HVPG Marx-Arkadiev

 $(\Delta V = 250 \text{ KV})$

• 2 Sensys Photometric CCD

Experimental Apparatus

The Self Shunted Streamer Chamber


The Shunting Effect

• gas: ⁴He (1 atm) +

 $\left\{ \begin{array}{l} \textbf{CH_4} \sim 0.05\% \\ \textbf{air} \sim 0.05\% \\ \textbf{H_2O} \sim 0.1\% \end{array} \right. \label{eq:charged_eq}$

higly localized tracks:
 ⊘ streamers: 1-2 mm

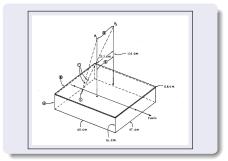
high contrast

Features

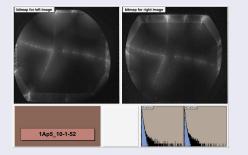
٩

$${}^{4}\text{He} \rightarrow \left\{ \begin{array}{c} \text{target} \\ \text{detection medium} \end{array} \right.$$

 momenta of strongly ionizing particles are *measureable* P_{×He}, P_p, P_{×H}

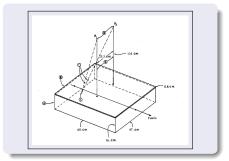

Averaged Track Lengths in ⁴ He				
Track	T_{π}	Tp	T _{3He}	T_{α}
(mm)	(MeV)	(MeV)	(MeV)	(MeV)
10	0.16	0.17	0.25	0.3
50	0.27	0.55	1.70	1.8
100	0.40	0.85	2.90	3.3
100(Ne)	1.40	3.40	11.10	12.9
200	0.57	1.30	4.50	5.0

Event reconstruction

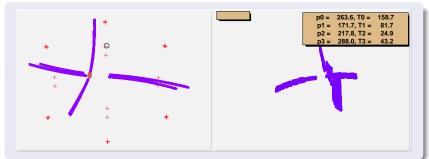

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Event Reconstruction

DIGITIZATION: Helix Track Reconstruction

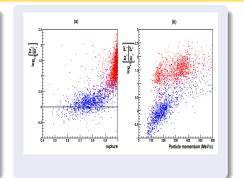


• res.: 1317 x 1035 pixels \rightarrow 1 pixel \equiv 1 mm • dynamic res.: 12 bit \rightarrow 2¹² = 4096 liv. grigio



Event Reconstruction

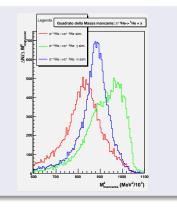
DIGITIZATION: Helix Track Reconstruction

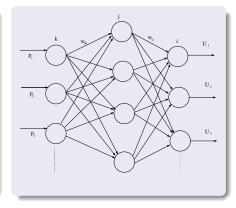

• res.: 1317 x 1035 pixels \rightarrow 1 pixel \equiv 1 mm • dynamic res.: 12 bit \rightarrow 2¹² = 4096 liv. grigio

200

DIGITIZATION: Helix Track Reconstruction

- vertex position
- vertex uncertainty
- directional cosines
- brightness
- radiuses → momenta
- momenta uncertainty

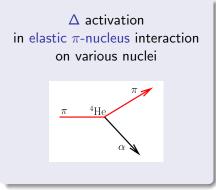


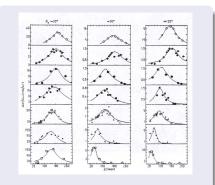

since $-dE/ds \propto z^2m^2/p^2...$...brightness* $p^2 \propto m^2$ can be used as a mass index... ...to separate π from p, α , ³He and ³H.

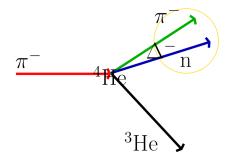
Event Recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reaction channels are separated by multidimensional cuts performed by an Artificial Neural Network

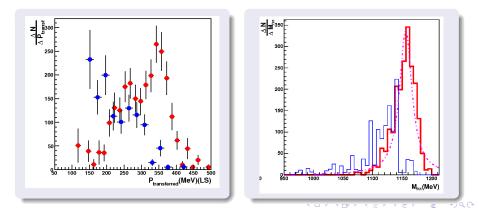



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで


Resonances in the nuclear medium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

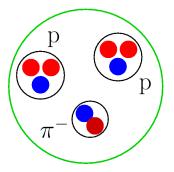
Nuclear medium at intermediate energies works in favour of resonances activation: the Isobaric Collective Resonance



first experimental Δ^- observation in π^- n³He knockout reaction

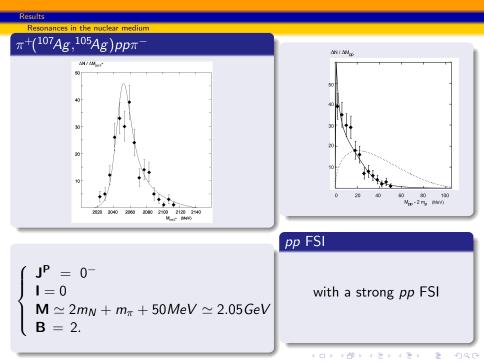
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

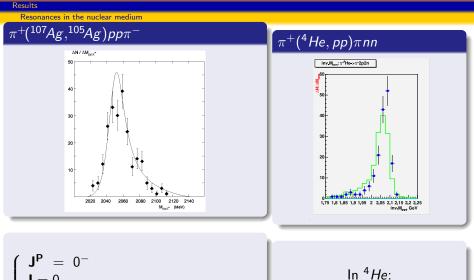
we observed Δ^- resonance in high $\mathsf{P}_{\textit{transf}}$ interactions



Features of $\Delta^$ in n³He reaction:

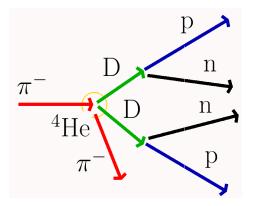
$M_{\Delta^-} = 1160 \text{ MeV}$ $\Gamma/2 = 20 \text{ MeV}$


the M_{Δ^-} shift and narrowing tells us:


- deep isobaric collective resonance
- we are on the ∆ activation energy left tail

dibaryonic d' experimental observations

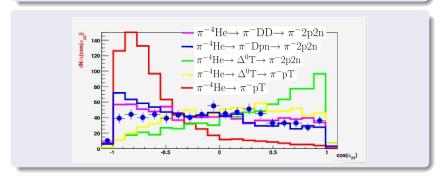
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



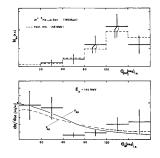
$$\mathbf{M} \simeq 2m_N + m_\pi + 50 MeV \simeq 2.05 GeV$$
$$\mathbf{B} = 2.$$

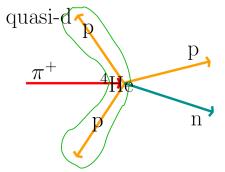
In ⁴He: $\mathbf{T}_{\pi}\simeq \mathbf{80}~\mathbf{MeV}$ $(50{+}28(^{4}He))$ MeV

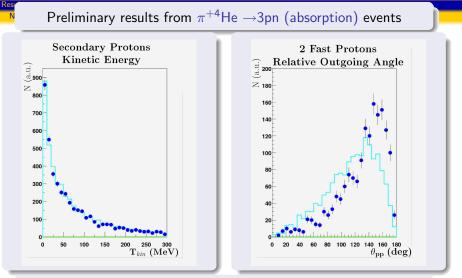
Nuclear Reaction Mechanisms


Nuclear Reaction Mechanisms

Preliminary study on ⁴He breakup via deuteron-deuteron intermediate state

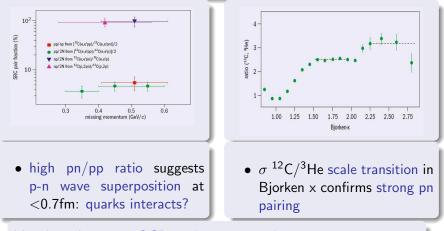

<ロ> (四) (四) (三) (三) (三) (三)

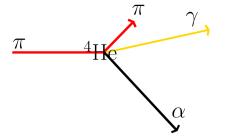

Nucleus breakup via deuteron-deuteron or deuteron-proton-neutron intermediate states can both explain the isotropy of Θ_{pp} .



It confirms the q-deuteron as a fundamental block of nuclear matter and Δ^0 does not activate in breakup reaction.

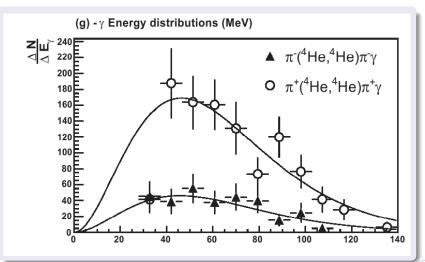
Preliminary study on π absorption on a qausi deuteron





- all secondaries (down to T<10 MeV protons) are measured(left)
- the two fastest protons are emitted at high relative angle (right)
- the π absorption is confirmed to occur on a quasi-deuteron

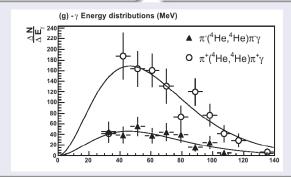
PAINUC, with π^4 He, may contribute to studies of p-n Short Range Correlations in nuclei as done at CEBAF: highly correlated pn pairs in e-¹²C


May be relevant to:QCD-nuclear potential transition, n-stars etc. (CernCourier49-1(2009)22, Science320,1476(2008) and refs in)

high energy γs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

π^{4} He γ : Energy distribution.


200

Possible γ s sources

• de-excit. of nuclear levels

- bremsstrahlung radiation
- prompt photons

...cannot explain γ s energies higher than 28 MeV...

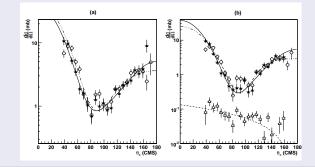
Possible γ s sources

- de-excit. of nuclear levels
- bremsstrahlung radiation
- prompt photons

 $\begin{array}{c} \dots \frac{B.R.gamma}{B.R.elastic} \\ \text{can only be compared with } \pi \text{p} \\ \text{measurement:} \\ \pi \text{p} \gamma \rightarrow 0.0185 \\ \pi^4 \text{He} \gamma \rightarrow 0.1 \end{array}$

[23] T. D. Blokhintseva et al. Yad. Fiz. (in Russian) 3 (1966) 511;
 T. D. Blokhintseva et al. Yad. Fiz. (in Russian) 8 (1968) 928.

[24] D. I. Sober et al. Phys. Rev. **11D** (1975) 1017.


[25] F. E. Low, Phys. Rev. **110** (1958) 974.

The light nuclear matter at the hadron gas phase transition

Possible γ s sources

- de-excit. of nuclear levels
- bremsstrahlung radiation
- prompt photons

...moreover the gamma emission is isotropic...

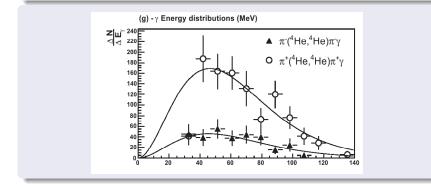
The light nuclear matter at the hadron gas phase transition

Possible γ s sources

- de-excit. of nuclear levels
- bremsstrahlung radiation
- prompt photons

...a similar γ spectra is seen in high energy heavy nuclei collision together with a bckg of pions... ...but due to qq interaction...

[26] P.Aurenche et al., Eur.Phys.J C 9, 107-119 (1999); Jorg Gayler, Acta Polonica B vol.37 (2006) numb.3, p.715. The light nuclear matter at the hadron gas phase transition

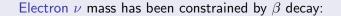

Possible γ s sources

The γ s energy distribution shows a Planck thermal behaviour:

$$rac{dI}{dE} \propto E^3 e^{-E/T}$$

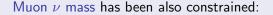
with T=14.4 \pm 1.6 MeV

at the same T heavier nuclei undergo hadron-gas transition



The $\pi \rightarrow \mu \nu$ decay and the ν_{μ} mass

The $\pi \to \mu \nu$ decay and the ν_{μ} mass

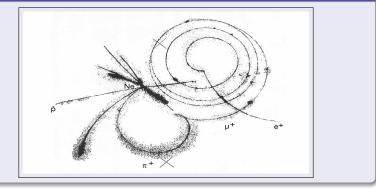

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The $\pi \rightarrow \mu \nu$ decay and the ν_{μ} mass

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- $\bar{\nu}_e <$ 2 eV (95% c.l.) from ³H β decay
- ν_e <225 eV (95% c.l.) from ¹⁶³Ho β decay

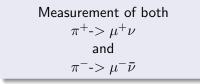
- by π decay in a spectrometer, with the assumptions of $P_{\pi}=0$, $\Delta P_{\pi}=0$ and $\theta_{\pi\mu}=0$
 - $\rightarrow M_{\nu} < 0.19 \text{ MeV} (90\% \text{ c.l.})$ Assamagan et al. Phys.Rev.D53:6065-6077,1996.

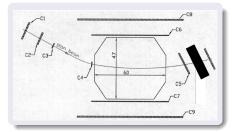

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

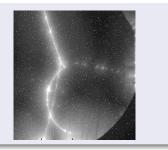
• by measuring the TOF of 3 GeV ν_{μ}

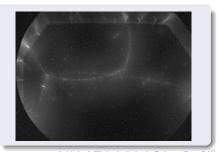
• $\rightarrow M_{\nu} < 50 \text{ MeV } (99\% \text{ c.l.})$ Adamson et al. Phys.Rev.D76:072005,2007.

The $\pi \rightarrow \mu \nu$ decay and the ν_{μ} mass

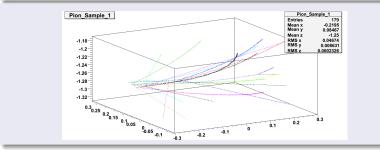

Muon Neutrino mass upper limit CERN PS179: p-Ne event

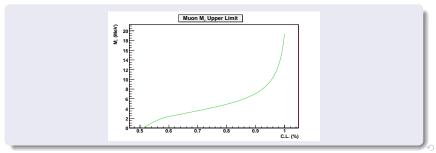



Kinematics of event

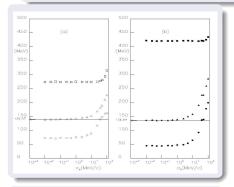

$$\left\{ egin{array}{l} {{\cal P}_{\pi}=(50\pm100){\it KeV/c}}\ {{\cal P}_{\mu}=(29.9\pm19){\it KeV/c}}\ {{\cal H}_{\mu}=(163\pm1)^{\circ}} \end{array}
ight.$$

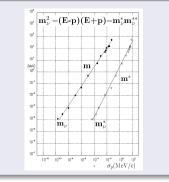
 $m_{\nu}^{2}(90\% c.l.) = (-11.1 + 1.282 * 12.5) MeV^{2}$ $m_{\nu}(90\% c.l.) = 2.2 MeV$





The $\pi \rightarrow \mu \nu$ decay and the ν_{μ} mass


First results of MC simulation with JINR streamer chamber.



Results

A study on a statistical estimator of u_{μ} and $ar{ u_{\mu}}$ masses

sistematic study of momentum resolution for the reconstruction of a missing particle mass in several decay (i.e. $\Sigma^+ \rightarrow p\pi^0$, $\Lambda \rightarrow p\pi^-$)

new statistical approach based on m^{*} as a statistical estimator (where $m_{\nu}^2 = m^*m^{**}$): increased mass resolution (in press in NIM A)

Summary and Future

- evidence for a $\pi^{\pm} + {}^{4}He \rightarrow \pi^{\pm} + {}^{4}He + \gamma$ reaction
 - Nuovo Cimento B
- first experimental evidence for Δ^- in
 - $\pi^- + {}^4 He \rightarrow \pi^- + {}^3 He + n$ reaction
 - ▶ Eur. Phys. J. A 34, 255-269 (2007)
- evidence for dibaryonic resonance d' on the nuclear emulsion

▶ Eur. Phys. J. A 28, 11-17 (2006)

- evidence for q-deuteron π absorption and breakup
 - ... pn correlation, repulsive nuclear potential and n-stars
- $\pi \to \mu \nu$: new measurements for the upper limit of u_{μ} mass
 - Nuclear Physics A 780 (2006) 78-89
 - \ldots upgrading the SSSC: \rightarrow new upper limit for muonic $M_{
 u}$
- $\pi
 ightarrow \mu
 u$: new statistical estimator for u_{μ} mass
 - ▶ in press on NIM A
 - ... could increase the mass resolution of orders of magnitude

Event Recognition

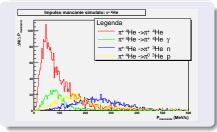
The following 2-prong $\pi^{\pm 4}$ He reaction channels have been separated by means of two approaches:

•
$$\pi^-$$
 + ⁴He $\rightarrow \pi^-$ + ⁴He
• π^- + ⁴He $\rightarrow \pi^-$ + ⁴He + γ
• π^- + ⁴He $\rightarrow \pi^-$ + ³He + n

The following 2-prong $\pi^{\pm 4}$ He reaction channels have been separated by means of two approaches:

•
$$\pi^- + {}^4He \rightarrow \pi^- + {}^4He$$

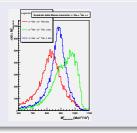
• $\pi^- + {}^4He \rightarrow \pi^- + {}^4He + \gamma$
• $\pi^- + {}^4He \rightarrow \pi^- + {}^3He + n$


by successive linear cuts in the kinematical parameter space The following 2-prong $\pi^{\pm 4}$ He reaction channels have been separated by means of two approaches:

•
$$\pi^-$$
 + ⁴He $\rightarrow \pi^-$ + ⁴He
• π^- + ⁴He $\rightarrow \pi^-$ + ⁴He + γ
• π^- + ⁴He $\rightarrow \pi^-$ + ³He + n

by successive linear cuts in the kinematical parameter space by non-linear multidimensional cuts performed by an Artificial Neural Network

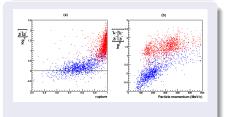
missing momentum


- missing mass
- o coplanarity angle
- track brightness

missing momentum

• missing mass

- o coplanarity angle
- track brightness

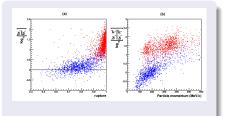


・ロト ・聞ト ・ヨト ・ヨト

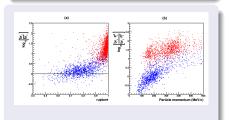
э

• missing momentum • missing mass • coplanarity angle • track brightness Angolo di Coplanarita'

- missing momentum
- missing mass
- coplanarity angle
- track brightness



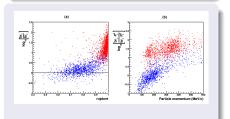
- missing momentum
- missing mass
- coplanarity angle
- track brightness


since $-dE/ds \propto z^2 m^2/p^2...$

(日)、

э

- missing momentum
- missing mass
- o coplanarity angle
- track brightness


since $-dE/ds \propto z^2 m^2/p^2...$

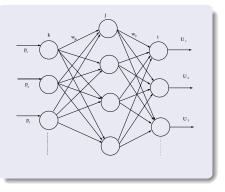
...brightness*p² \propto m² can be used as a mass index...

・ロト ・聞ト ・ヨト ・ヨト

э

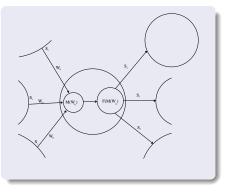
- missing momentum
- missing mass
- oplanarity angle
- track brightness

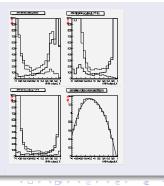
since $-dE/ds \propto z^2 m^2/p^2...$


...brightness*p² \propto m² can be used as a mass index...

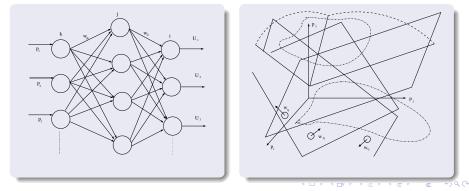
...to separate π from p, α , ³He and ³H.

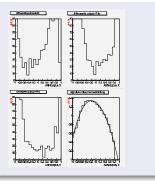
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで


The kinematical parameters serve as input of the 4 input neurons

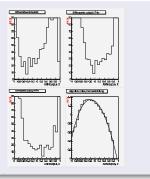

- w_{ij} intra-neurons weight
- *p_k* array of kinematical parameters

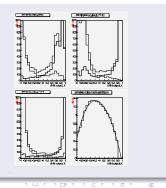
During the training phase a simulated population allows for intra-neurons weight adjustment


$$\Delta w_{ij} = \gamma \frac{\partial E}{\partial w_{ij}}.$$



The ANN generates the best surface for separating events within the parameter space


$$U_{i} = f_{a}\left[\frac{1}{T}\sum_{j}w_{ij}f_{a}\left(\frac{1}{T}\sum_{k}w_{jk}p_{k} + o_{j}\right) + o_{i}\right]$$



The results is the *probability* for each event to belong to each channel

The ANN results in simulated events are used to evaluate the systematic error on branching ratios

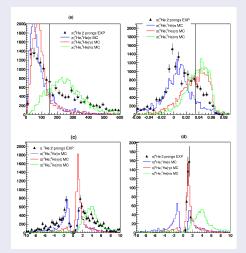
Results for 2-prong π^{-4} He reactions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Number of events per reaction channel after ANN processing:

	channel	Number of signal events (ANN)	Events lost to background	Events added from background	Final number of events
2.	π^{-4} He	757±28	285	132	911±34
	π^{-4} He γ	62±8	41	6	97±10
	π^{-} n ³ He	704±27	120	34	790±29

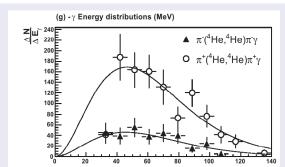
Branching ratios for 2-prong $\pi^{\pm 4}$ He reaction channels at 106 MeV:


_	Channel	BR, π^-
	2. π^{-4} He γ	$0.51{\pm}0.02$ $0.05{\pm}0.01$ $0.44{\pm}0.02$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

high energy $\gamma \mathbf{s}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

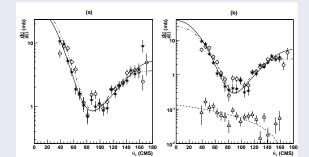

to check the π^4 He γ events we applied severe linear cuts:

200

- de-excit. of nuclear levels
- bremsstrahlung radiation
- Δ de-excitation
- prompt photons

...cannot explain γ s energies higher than 28 MeV...

200


- de-excit. of nuclear levels
- bremsstrahlung radiation
- Δ de-excitation
- prompt photons

 $\begin{array}{c} \dots \frac{B.R.gamma}{B.R.elastic} \\ \text{can only be compared with } \pi p \\ \text{measurement:} \\ \pi p \rightarrow 0.0185 \\ \pi^4 \text{He}\gamma \rightarrow 0.1 \end{array}$

- [23] T. D. Blokhintseva et al. Yad. Fiz. (in Russian) 3 (1966) 511;
 T. D. Blokhintseva et al. Yad. Fiz. (in Russian) 8 (1968) 928.
- [24] D. I. Sober et al. Phys. Rev. **11D** (1975) 1017.
- [25] F. E. Low, Phys. Rev. **110** (1958) 974.

- de-excit. of nuclear levels
- bremsstrahlung radiation
- Δ de-excitation
- prompt photons

...moreover the gamma emission is isotropic...

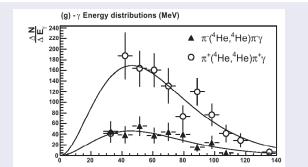
- de-excit. of nuclear levels
- bremsstrahlung radiation
- A de-excitation
- prompt photons

...is one of the possible channels...

[27] G.Lopez Castro and A.Mariano, Nucl. Phys. A 697 (2002) 440-468.

Possible γ s sources

- de-excit. of nuclear levels
- bremsstrahlung radiation
- prompt photons

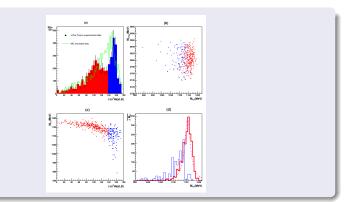

...a similar γ spectra is seen in high energy heavy nuclei collision together with a bckg of pions... ...but due to qq interaction...

[26] P.Aurenche et al., Eur.Phys.J C 9, 107-119 (1999); Jorg Gayler, Acta Polonica B vol.37 (2006) numb.3, p.715.

Possible γ s sources

The γ s energy distribution shows a Planck thermal behaviour:

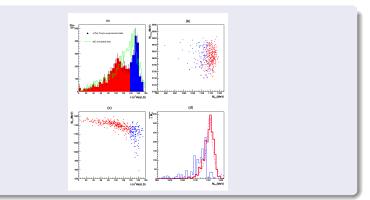
$$rac{dl}{dE} \propto E^3 e^{-E/T}$$
with T=14.4 ± 1.6 MeV


200

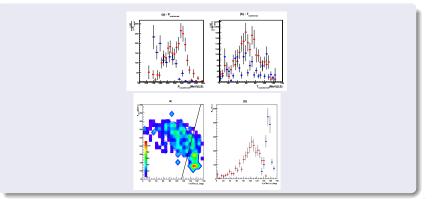
first experimental Δ^- observation in π^-n^3 He knockout reaction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\pi^{-}n^{3}He$ reaction: 2 structures are visible in $\theta_{n^{3}He}$ distribution:


- at high $\theta_{n^3He} \rightarrow$ "phase space"
- at low $\theta_{n^3He} \rightarrow \rightarrow$ resonance

▲□▶▲□▶▲□▶▲□▶ Ξ のQ()


 π^{-} n³He reaction: 2 structures are visible in $\theta_{n^{3}He}$ distribution:

- at high $\theta_{n^3He} \rightarrow$ "phase space"
- at low $\theta_{n^3He} \rightarrow \rightarrow$ resonance

▲ロ > ▲園 > ▲ 恵 > ▲ 恵 > 三回 「 の Q ()・

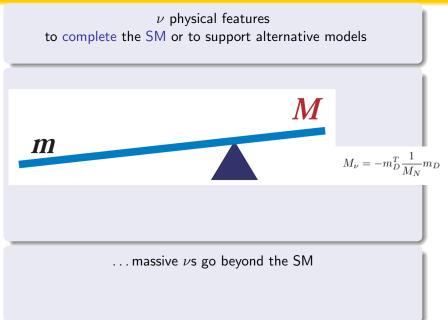
$\begin{array}{c} \text{overlapping region:} \\ \text{we observed } \Delta^- \\ \text{activated only for high } \mathsf{P}_{\textit{transf}} \end{array}$

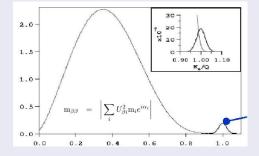
▲ロ > ▲園 > ▲ 恵 > ▲ 恵 > 三回 「 の Q ()・

Features of $\Delta^$ in θ_{n^3He} reaction:

$\begin{array}{l} \mathsf{M}_{\Delta^-} = 1160 \ \mathsf{MeV} \\ \mathsf{\Gamma}/2 = 20 \ \mathsf{MeV} \end{array}$

▲日 ▶ ▲理 ▶ ▲ 理 ▶ ▲ 理 ▲ ④ ♥ ●

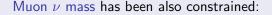

ν masses are fundamental parameters for modern physics:


ν possible candidates for Hot Dark Matter ... strongly dependent on decoupling T and masses

... and observable as LSS confinement and velocities

Double β decay gives information on Majorana-Dirac nature of ν s

Majorana or Dirac ν , ν magnetic moment are correlated with ν masses ...



- $\bar{\nu}_e <$ 2 eV (95% c.l.) from ³H β decay
- $\nu_e < 225 \text{ eV} (95\% \text{ c.l.})$ from ¹⁶³Ho β decay

 ν oscillation experiments give information on Δm_{ν} :

$$P(v_{a} - v_{b}) - > \sin^{2} 2\theta \sin^{2} (1.27 \frac{\Delta m_{ab}^{2} (eV^{2}) L(km/m)}{E (GeV/MeV)})$$

$$LGS-OPERA, K2K, DAYA BAY (\nu)$$
factories)
and SNO, BOREXINO, SUPERKAMIOKANDE (solar and atm.)

- by π decay in a spectrometer, with the assumptions of $P_{\pi}=0$, $\Delta P_{\pi}=0$ and $\theta_{\pi\mu}=0$
 - $\rightarrow M_{\nu} < 0.19 \text{ MeV} (90\% \text{ c.l.})$ Assamagan et al. Phys.Rev.D53:6065-6077,1996.

• by measuring the TOF of 3 GeV u_{μ}

• $\rightarrow M_{\nu} <$ 50 MeV (99% c.l.) Adamson et al. Phys.Rev.D76:072005,2007.